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1 INTRODUCCIÓN

1. Introducción

Uno de los pilares más importantes de la física moderna es la mecánica cuántica, la cual,
desde sus inicios ha transformado nuestra comprensión de la naturaleza hasta escalas fun-
damentales. Sus principios, como la superposición y el entrelazamiento de estados, han
trascendido el interés puramente teórico hacia la práctica impulsando el desarrollo de nue-
vas tecnologías en diversos campos de nuestra vida cotidiana, por ejemplo los teléfonos
inteligentes que usamos día a día o incluso aquellas que son aplicables en la medicina.
Un campo destacable que busca aprovechar estos fenómenos cuánticos es el de la infor-
mación cuántica, en donde se busca procesar y transmitir información de formas que son
inaccesibles para la computación clásica. Mientras esta última codifica la información en
unidades básicas (bits) que representan un estado bien definido (0 ó 1), la computación
cuántica, relevante dentro del marco de la información cuántica, busca codificar la infor-
mación en unidades básicas que pueden existir en una superposición de ambos estados
simultáneamente.

Dentro de la computación cuántica existen dos paradigmas con gran relevancia: El cómpu-
to cuántico de variable discreta (CCVD), basado en qubits, es quizás el más conocido, pero
también existe el cómputo cuántico de variable continua (CCVC), el cual es una variante
de la computación cuántica que utiliza variables físicas continuas para la codificación de
la información, por ejemplo: la posición y el momento de una partícula, o los modos de
un campo cuántico.

El objetivo de este trabajo es caracterizar un conjunto específico de estados cuánticos
denominados estados de fase cúbica, que pertenecen a la clase de estados no Gaussia-
nos. Estos estados resultan de aplicar un operador no lineal, conocido como el operador
de fase cúbica, sobre el estado de vacío comprimido. En términos generales, los estados
no Gaussianos son fundamentales para extender las capacidades del procesamiento de
información cuántica más allá de lo que permiten las operaciones Gaussianas, como des-
plazamientos y compresiones. En particular, el operador de fase cúbica introduce una no
linealidad cúbica al depender del operador de posición elevado al cubo. Esta característica
permite explorar nuevas posibilidades en la manipulación de estados cuánticos y habilita,
en teoría, una ventaja computacional frente a los métodos clásicos. El interés en los esta-
dos de fase cúbica radica en su posible implementación dentro del marco del CCVC. En
este contexto, los estados no Gaussianos como los de fase cúbica pueden complementar
operaciones Gaussianas para lograr universalidad en el cómputo cuántico.

Para formalizar el valor de estos estados como recursos computacionales, se adopta una
teoría de recursos basada en la función de Wigner, una función de cuasi-probabilidad que
describe el estado cuántico de un sistema en el espacio fase. Una propiedad distintiva de
los estados no Gaussianos es que su función de Wigner puede presentar regiones con va-
lores negativos, lo cual es una manifestación directa de su no clasicidad. Esta negatividad
de la función de Wigner se interpreta como un recurso cuántico útil en el CCVC.

Concretamente, los estados de fase cúbica exhiben dicha negatividad, lo que los convierte
en candidatos prometedores para el cómputo cuántico con ventajas reales. Para cuantificar
este recurso, se utiliza la negatividad logarítmica de la función de Wigner. El trabajo se
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1.1 Estados de Fock 1 INTRODUCCIÓN

enfoca en determinar la combinación óptima de parámetros que maximice esta medida de
recurso, mediante simulaciones numéricas. Para ello, se emplean dos métodos de apro-
ximación del operador de fase cúbica: (a) la expansión en serie de Taylor del operador
de fase cúbica, y (b) el algoritmo de Clenshaw, implementado en la biblioteca QuTiP de
Python, la cual permite una simulación eficiente de ciertos sistemas cuánticos.

1.1. Estados de Fock

Debido a que en el CCVC puede trabajarse con modos de campos electromagnéticos, es
prudente mencionar que una forma común de describirlos es a partir de los estados de
Fock. Un estado de Fock |n⟩ (también conocido como estado de número), es un estado
físico con una cantidad bien definida (n) de fotones (o, en general, bosones), en el que las
amplitudes de los campos electromagnéticos no están bien definidas debido la no conmu-
tación entre los operadores de creación (â†) y aniquilación (â) con el operador de número
(N̂ = â†â) [1, 2]. Esto es así ya que, si bien existe un número n de fotones en el sistema,
la aplicación de alguno de estos dos operadores cambiará esta cantidad sucesivamente con
cada aplicación.

Los estados de Fock forman una base completa del espacio de Hilbert asociado a un
oscilador armónico cuántico. En el CCVC, el espacio de Fock proporciona una base orto-
normal fundamental (⟨m|n⟩ = δmn), ya que en un sentido físico, la descripción cuántica
del campo electromagnético puede representarse mediante la expansión del operador de
densidad en la base de estados de Fock, la cual incluye términos diagonales y no diago-
nales. Debido a la importancia que tienen estos estados en el CCVC, es prudente hacer
mención de su definición y la acción que tienen los operadores de creación y aniquilación
sobre estos estados [1, 2]:

â† = 1√
2ℏ

(q̂ − ip̂), â = 1√
2ℏ

(q̂ + ip̂). (1.1)

En donde ℏ es la constante de Planck reducida, la cual, aunque se mostrará explícitamente
en las ecuaciones siguientes, para la sección de resultados y los códigos que se utilicen, se
hará ℏ = 1. Ahora, teniendo en cuenta una función de onda ψ en el espacio de posición,
los operadores de posición y momento (q̂ y p̂, respectivamente) se definen como:

q̂ψ(q) = qψ(q), p̂ψ(q) = −iℏ d
dq
ψ(q). (1.2)

Por otra parte, la acción de los operadores â y â† sobre |n⟩ es tal que:

â†|0⟩ =
√
n+ 1|n+ 1⟩, â|n⟩ =

√
n|n− 1⟩. (1.3)
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1.2 Estados y operaciones Gaussianas 1 INTRODUCCIÓN

Por supuesto, los operadores de posición (q̂) y momento (p̂) pueden escribirse en términos
de los de creación y aniquilación, a saber:

q̂ =
√
ℏ
2
(
â† + â

)
, p̂ = i

√
ℏ
2
(
â† − â

)
. (1.4)

El estado de vacío, |0⟩, resulta de suma importancia, pues los estados de Fock pueden
generarse a partir de este estado base [1]:

|n⟩ = (â†)n

√
n!

|0⟩. (1.5)

Esto es relevante en el contexto de CCVC, porque muchos estados (como los estados
Gaussianos) son superposiciones infinitas de estados de Fock.

1.2. Estados y operaciones Gaussianas

Los estados Gaussianos representan un tipo particular de estado en los sistemas cuánticos,
a menudo considerados como los más “simples” o “clásicos” dentro de su descripción. Las
operaciones Gaussianas son transformaciones cuánticas que provienen de interacciones
físicas descritas por Hamiltonianos que son, como máximo, cuadráticos en los operadores
canónicos (como posición q̂ y momento p̂, o los operadores de aniquilación â y creación
â†) [3]. Una característica importante de estas operaciones es que, cuando se aplican a
estados Gaussianos, el resultado sigue siendo un estado Gaussiano [4].

La relevancia clave de esta combinación de estados y operaciones simples es que se ha
demostrado que si un proceso físico cuántico utiliza únicamente estados Gaussianos y
operaciones Gaussianas que no añaden una complejidad cuántica más profunda, este pro-
ceso puede ser reproducido y simulado eficientemente en una computadora clásica con-
vencional [3, 4, 5, 6].

Por lo tanto, para poder llevar a cabo tareas que van más allá de lo que una computadora
clásica puede simular de manera eficiente, se vuelve necesario el uso de estados o trans-
formaciones que no sean de este tipo Gaussiano, es decir, que manifiesten propiedades
cuánticas que rompen con esta “simplicidad” o “clasicidad” particular.

1.3. Estados Gaussianos

Los estados Gaussianos son un tipo de estados cuánticos con una gran relevancia experi-
mental en el marco de la óptica cuántica ya que las operaciones sobre ellos (operaciones
Gaussianas) son matemáticamente manejables, es decir, pueden manipularse con cierta
facilidad y experimentalmente accesibles [7]. La característica que define a un estado
Gaussiano es que está completamente especificado por sus dos primeros momentos es-
tadísticos: medias (primer momento) y la covarianza (segundo momento) [5, 6]. Se les
llama “Gaussianos” porque sus funciones de cuasiprobabilidad en el espacio fase, como

4 PROYECTO TERMINAL I



1.3 Estados Gaussianos 1 INTRODUCCIÓN

la función de Wigner (W (q, p)), la cual se verá posteriormente, tiene una forma Gaussia-
na. En general, la función de onda de los estados Gaussianos puros (que son los que se
tratarán en este trabajo) es [8]:

ψ(x) = e− 1
2 (ax2+2bx+c), (1.6)

en donde a, b, c ∈ C, además Re(a) > 0 y c se debe elegir de forma que se asegure la
normalización [8].

1.3.1. Estados Coherentes

Estos estados pueden describirse como un estado en el que el paquete de ondas del estado
fundamental se ha desplazado en el espacio de fases de posiciones y momentos (q, p).
Así, pueden generarse haciendo uso del operador de desplazamiento D(α) = eαâ†−α∗â,
aplicándolo sobre el estado de vacío |0⟩ dando como resultado [1, 2]:

|α⟩ = D(α)|0⟩ = e− 1
2 |α|2

∞∑
n=0

αn

√
n!

|n⟩, (1.7)

en donde α ∈ C. Una característica muy importante de los estados coherentes es que
minimizan la relación de incertidumbre de Heisenberg [1]. Además, poseen la propiedad
de mantener una fase bien definida durante un periodo de tiempo determinado, debido a
que están constituidos por una superposición cuántica de estados con número indefinido
de fotones. Esto contrasta con los estados de Fock (o estados de número), los cuales
presentan una fase completamente aleatoria [1].

1.3.2. Estados comprimidos

Los estados comprimidos representan una extensión de los estados coherentes, y son fun-
damentales en la descripción de sistemas cuánticos donde las fluctuaciones en una cua-
dratura, como la posición o el momento (Ec. 1.4), necesitan minimizarse por debajo de
las que se asocian con los estados coherentes. A diferencia de estos últimos que, como se
ha visto, mantienen una incertidumbre que es igual en ambas cuadraturas y minimizan la
relación de incertidumbre de Heisenberg, los estados comprimidos las redistribuyen entre
las cuadraturas de manera que alguna de ellas puede reducirse por debajo del límite de
Heisenberg a costa de aumentar las fluctuaciones en la cuadratura complementaria para
respetar la relación de incertidumbre [1, 2].

Este tipo de estados, de manera similar a cómo son creados los estados coherentes, tam-
bién se crean mediante la aplicación de un operador dependiente de algún operador canó-
nico, particularmente â y â†, solo que en este caso se aplica a un estado coherente (|α⟩).
Este operador es conocido como operador de compresión y es definido como [1, 2]:

Ŝ(ξ) = e
1
2 (ξ∗â2−ξâ†2). (1.8)
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En donde ξ = reiθ determina el grado de compresión que sufrirá el estado al que se
aplique a través de la magnitud r ∈ [0,∞) y en dirección de θ ∈ [0, 2π], es decir, no es
forzoso que la compresión se dé a lo largo de q o de p, sino que puede darse en cualquier
dirección del espacio fase [1, 2].

A diferencia de D̂(α), que actúa creando o destruyendo fotones de manera individual,
Ŝ(ξ) lo hace en pares de fotones correlacionados [1], lo cual puede observarse en el ar-
gumento de la función exponencial, que, a diferencia del operador de desplazamiento,
contiene â2 y â†2.

Para poder analizar cómo cambian las cuadraturas y propiedades de los fotones en este
tipo de estados, es necesario observar qué sucede cuando Ŝ(ξ) (y Ŝ†(ξ) = Ŝ−1(ξ) =
Ŝ(−ξ)) se aplica sobre los operadores de creación y aniquilación:

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r,

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r − âe−iθ sinh r. (1.9)

El operador de compresión puede aplicarse a un estado general |ψ⟩ el cual se transforma
en un nuevo estado |ψs⟩ = Ŝ(ξ)|ψ⟩ que mantiene propiedades de |ψ⟩ pero con diferencias
en las cuadraturas. Sin embargo, también puede aplicarse directamente sobre el estado
fundamental introduciendo pares de fotones correlacionados distribuidos de manera que
las fluctuaciones difieran en las cuadraturas [1].

De esta manera, se puede obtener un estado comprimido más general al aplicar D̂(α)
sobre las ecuaciones 1.9 y el estado de vacío, resultando en [1]:

|α, ξ⟩ = D̂(α)Ŝ(ξ)|0⟩. (1.10)

Así, si ξ = 0, se obtiene un estado coherente, o por el contrario, hacer α = 0 y se obtiene
el vacío comprimido.

El operador de compresión también puede expandirse en términos de estados de Fock [1],
sin embargo, esta expansión únicamente involucra términos pares debido a que Ŝ(ξ) los
introduce (o aniquila) en pares. Así, el estado de vacío comprimido se expresa como [1]:

|ξ⟩ = 1√
cosh r

∞∑
m=0

(−1)m

√
(2m)!

2mm! e
imθ(tanh r)m|2m⟩ = Am(r, θ)|2m⟩. (1.11)
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Una forma simple de analizar este tipo de estados surge de notar que el operador Ŝ(ξ)
reescala la función de onda de acuerdo con la siguiente ecuación [9]:

ψξ(q) = eξ/2ψ0(eξq). (1.12)

Estos estados Gaussianos pueden visualizarse en el espacio fase de posiciones y momen-
tos mediante una distribución de probabilidad, que particularmente en este estudio se
utilizará la función de Wigner.

1.4. Función de Wigner

Se trata de una distribución de cuasi-probabilidad en el espacio fase, esto quiere decir
que, a diferencia de una distribución de probabilidad común, esta puede tomar valores ne-
gativos para estados de naturaleza no clásica y resulta de mucha utilidad para representar
estados cuánticos de una manera similar a como se hace en la mecánica clásica [1]. Ca-
be mencionar que, aunque la función de Wigner puede definirse mediante convenciones
ligeramente diferentes, todas ellas son equivalentes. Una de ellas es:

W (q, p) = 1
2πℏ

∫
ψ∗
(
q + 1

2y
)
ψ
(
q − 1

2y
)
e−ipy/ℏdy. (1.13)

En esta ecuación, q y p son las variables de posición y momento en el espacio fase y
corresponden a los eigenvalores de de los operadores q̂ y p̂, respectivamente. Por supuesto,
ψ(x) corresponde a la función de onda del estado en cuestión.

Mediante la obtención de la función de Wigner asociada a algún estado, puede visualizarse
su densidad de probabilidad en el espacio fase. Particularmente se muestran las asociadas
a los estados Gaussianos mencionados en la sección previa. En la Fig. 1 se muestra la
función de Wigner asociada a un estado coherente desplazado hacia la posición (1, 1) en
el espacio fase, mientras que en la Fig. 2 se visualiza la función de Wigner correspondiente
a un estado comprimido centrado en el origen.

7 PROYECTO TERMINAL I



1.4 Función de Wigner 1 INTRODUCCIÓN

Figura 1: Se muestra la función de Wigner asociada a un estado coherente desplazado en
las cuadraturas de posición y momento hacia (q = 1, p = 1). Puede notarse en la gráfica
en 2 dimensiones que la incertidumbre para la posición es igual que la del momento,
mientras que en 3 dimensiones se observa que esta función tiene una forma Gaussiana.

Figura 2: Se muestra la función de Wigner asociada a un estado comprimido centrado
en el origen. Puede notarse en la gráfica en 2 dimensiones que la incertidumbre para la
posición es mayor que la del momento, mientras que en 3 dimensiones se observa que esta
función tiene una forma Gaussiana “alargada” hacia un lado, efecto debido a una mayor
incertidumbre en q que en p.

8 PROYECTO TERMINAL I
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1.5. Cómputo Cuántico

La computación clásica y la computación cuántica representan enfoques distintos para
el procesamiento de información. Mientras que la computación clásica opera con bits
binarios (0 ó 1), lo que constituye la base de la computación digital, también pueden
utilizarse variables continuas mediante sistemas analógicos [10].

La computación cuántica, por su parte, se distingue por aprovechar fenómenos descritos
por la mecánica cuántica. Uno de los fenómenos fundamentales para este tipo de cómputo
es la superposición, esto es: la capacidad de que un sistema cuántico puede existir en una
combinación de estados simultáneamente, a diferencia del bit clásico que solo puede estar
en un estado discreto (0 ó 1).

Esta información en estado de superposición puede codificarse de manera discreta, utili-
zando sistemas con un número finito de estados, como los qubits, los cuales pueden estar
en una superposición lineal de los estados base |0⟩ y |1⟩ [6]. Este tipo de computación,
conocido como cómputo cuántico de variable discreta (CCVD), es el más conocido y es-
tudiado [6], sin embargo, se han encontrado algunas limitantes en su implementación y
escalamiento para una gran cantidad de qubits, por ejemplo, lograr mantener la coheren-
cia entre ellos por un tiempo prolongado, es decir, mantener los estados de superposición
y el enredamiento entre ellos [1, 11].

Por otra parte, la información en estado de superposición, también puede codificarse de
manera continua, de manera semejante a la computación clásica. La computación cuán-
tica de variable continua (CCVC) opera sobre sistemas cuánticos descritos por variables
continuas, como la posición y el momento. En este marco, los estados también pueden
existir en superposición de estados base continuos [6]. Los elementos básicos utilizados
en CCVC, que a menudo son modos de un campo cuántico (por ejemplo, modos del cam-
po electromagnético [6, 7, 12], suelen ser referidos como qumodes, en analogía con los
qubits utilizados en la computación cuántica de vaciable discreta (CCVD) [13].

La capacidad de codificar la información en estados dotados de superposición hace que,
en el cómputo cuántico, se puedan representar múltiples valores al mismo tiempo, lo que
permite procesar información de manera paralela, es decir, realizar una operación o eva-
luar una función con varias entradas simultáneamente en un solo paso, con lo que poten-
cialmente, se podrían resolver ciertos problemas mucho más rápido que una computadora
clásica [6].

1.5.1. Cómputo universal

El cómputo universal es la capacidad de un sistema computacional para simular cualquier
algoritmo mediante un conjunto finito de operaciones básicas [6]. Para el cómputo uni-
versal clásico las operaciones básicas que permiten simular cualquier algoritmo son las
operaciones lógicas AND, OR y NOT. Su versión cuántica amplía este concepto al domi-
nio de las transformaciones unitarias propias de la mecánica cuántica. Es decir, implica la
capacidad de aproximar cualquier transformación unitaria mediante un conjunto finito de
operaciones cuánticas elementales [6].

9 PROYECTO TERMINAL I
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En el mundo de las variables continuas, hablar de computación cuántica universal se vuel-
ve un poco más delicado que en el caso discreto, esto se debe a que una transformación
unitaria completamente arbitraria sobre una sola variable continua implicaría usar una
cantidad infinita de parámetros para poder transformar por completo todo el espacio, lo
cual resulta poco práctico. Es por ello que la idea de universalidad se restringe a ciertas
subclases de transformaciones más manejables. En particular, aquellas que provienen de
Hamiltonianos polinómicos: es decir, Hamiltonianos que se pueden escribir como fun-
ciones polinómicas de los operadores canónicos continuos (por ejemplo, posición (q̂) y
momento (p̂)) [6].

A pesar de que las operaciones Gaussianas permiten manipular los estados cuánticos de
diversas formas, estas por sí solas no son suficientes para la computación cuántica uni-
versal [3, 14, 15]. Esto se debe a que los procesos cuánticos que involucran este tipo de
operaciones y estados Gaussianos pueden ser simulados eficientemente de manera clásica
[3], lo que significa que no proporcionan una ventaja computacional cuántica significativa
sobre las computadoras clásicas.

Por otra parte, se ha mostrado que mediante la combinación de operaciones lineales (co-
mo desplazamientos o transformaciones gaussianas) con al menos una operación por lo
menos cúbica (que contenga, por ejemplo, q̂3 o p̂3) podría lograrse la computación cuán-
tica universal en el marco de variables continuas [14, 15]. Es aquí donde las teorías de
recursos, particularmente las de no-Gaussianidad y negatividad de la función de Wigner,
adquieren relevancia, pues proporcionan un marco formal para identificar y cuantificar las
propiedades cuánticas que son necesarias para lograr la computación cuántica universal y
poder alcanzar una ventaja cuántica computacional sobre los métodos clásicos en algunas
tareas específicas [15].
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2. Teoría de recursos y sus elementos

Para entender de que trata una teoría de recursos es útil comprender, en primer lugar, qué
es un recurso. Un recurso es algo que adquiere valor debido a que existen restricciones
que impiden obtenerlo libremente dentro del sistema que se esté considerando, así por
ejemplo, en la economía, algunos recursos pueden ser el agua, el oro o el petróleo ya
que no pueden producirse de manera arbitraria, sino que el sistema, para este ejemplo, el
planeta, tiene una cantidad limitada de estos. En un contexto computacional, el poder de
cómputo (CPU, RAM, GPU, etc.) es un recurso limitado ya que algún software que se
ejecute dentro de una PC no puede utilizar más memoria o procesamiento que el que es
permitido por el hardware actualmente implementado en la misma, de manera que, si se
busca aumentar el poder de cómputo, será forzoso añadir hardware adicional en la placa
madre de la computadora para lograrlo, es decir, agregarlo al sistema [16].

Dentro de una teoría de recursos, existen operaciones y estados que son permisibles, de
manera que a estos se les denomina como libres [17]. Por otro lado, los estados que no son
libres, se denominan como estados de recurso y sus operaciones como prohibidas [17].

2.1. Teoría de recursos cuánticos

Por supuesto, las teorías de recursos no son exclusivas del mundo clásico, sino que tam-
bién existen en el contexto de la mecánica cuántica, así, análogamente a los ejemplos
económico y computacional mencionados, en el mundo cuántico existen propiedades que
no pueden ser creadas libremente bajo ciertas restricciones físicas o matemáticas, como
pueden ser el enredamiento, la coherencia o la negatividad de la función de Wigner [18]
(de la cual se hablará con más detalle posteriormente).

De manera análoga al caso clásico, surge la pregunta de qué es posible hacer con los recur-
sos que brinda la física cuántica. Es así que las teorías de recursos cuánticos (TRC) sirven
para cuantificar un determinado efecto cuántico a partir de definir medidas, desarrollar
protocolos para su detección o identificar procesos que permitan optimizar su aprovecha-
miento para una aplicación dada [18]. Debido a esto, las TRC han propiciado ver estos
efectos con miras a la utilidad y no solo como fenómenos físicos.

2.2. Operaciones libres

Las operaciones libres son aquellas transformaciones permitidas dentro de una teoría de
recursos que no generan el recurso en cuestión. Es decir, son operaciones que conservan la
cantidad de recurso y, por lo tanto, no permiten obtener un estado con mayor cantidad de
este a partir de uno con menor cantidad. Estas operaciones son consideradas “gratuitas”,
en el sentido de que no requieren gasto del recurso [18].

Las restricciones que definen qué operaciones son libres dependen de la teoría de recursos
específica que se esté considerando, por lo que pueden variar drásticamente entre distintos
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marcos teóricos. Sin embargo, todas estas comparten una característica fundamental: No
es posible generar recursos a partir de operaciones libres [18].

En el contexto de la mecánica cuántica, las operaciones libres no incluyen todas las trans-
formaciones permitidas por la teoría cuántica, sino que representan un subconjunto res-
tringido. Como consecuencia, no todos los estados cuánticos pueden ser generados a partir
de un estado inicial fijo utilizando solo operaciones libres.

La teoría de recursos de interés para este trabajo es la relacionada con la no gaussianidad
cuántica y negatividad de Wigner, en la cual las operaciones libres se denominan Protoco-
los Gaussianos (PG), de los cuales los Protocolos Gaussianos Deterministas (PGD) son un
subconjunto que preserva la traza [5], es decir, si se aplica una transformación unitaria U a
un estado ρ, se cumple que Tr[UρU †] = Tr[ρ]. Esto permite que no se pierda información
al aplicar U .

2.3. Estados libres

Son los estados accesibles o que se pueden generar exclusivamente mediante operaciones
libres, es decir, sin necesidad de consumir el recurso que se esté considerando, de manera
coloquial, puede decirse que son estados “gratuitos” [18]. Por ejemplo, en el marco de
la termodinámica clásica, un sistema en equilibrio térmico a temperatura T es un estado
libre, ya que puede obtenerse sin necesidad de gastar energía adicional.

Un principio fundamental en cualquier teoría de recursos es que las operaciones libres
preservan los estados libres, así, si se aplica una operación de este tipo a un estado libre,
el resultado seguirá siendo un estado libre. Esto garantiza que los estados de recurso no
puedan obtenerse a partir de estados libres mediante operaciones permitidas dentro de la
teoría. Así, cualquier estado que no sea libre, es denominado como un recurso [17, 19].

En el marco de la TRC que se estudiará se pueden definir los estados libres como aquellos
cuya función de Wigner es positiva (Ec. 1.13). Es decir, para un conjunto de operadores
de densidad en el espacio de Hilbert H de un número arbitrario, pero finito se cumple [5]:

W+ = {ρ ∈ F |Wρ ≥ 0} .

En el marco de la teoría de recursos de la negatividad de la función de Wigner, estos son
los estados libres [5].

2.4. Recursos

La existencia de recursos plantea una cuestión natural acerca de cuánto de ellos hay dispo-
nible dentro del sistema bajo estudio, por lo que, para responderla, este debe ser cuantifi-
cado y con ello surge la necesidad de definir una medida para hacerlo. Existen dos tipos de
medidas relevantes relacionadas a un recurso en una TRC: las medidas monótonas, que
cuantifican la cantidad existente y los testigos, que identifican la presencia del recurso
mediante observables [5, 14].
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2.4.1. Medidas monótonas

En una TRC, las medidas monótonas son funciones que cuantifican la cantidad de recur-
so presente en un estado o sistema cuántico. Para que una función M sea una medida
monótona válida, debe cumplir con algunos principios característicos como:

1. Orden entre recursos: Si se tienen dos estados diferentes, a y b, cada uno con cier-
ta cantidad de recurso, de los cuales a posee al menos la misma cantidad de recurso
que b, entonces esto significa que es posible transformar a en b mediante operacio-
nes permitidas (operaciones libres). En términos de la medida, esto significa que
si a puede transformarse en b, entonces la medida asignada al recurso a debe ser
mayor o igual a la medida asignada al b [20]:

M(a) ≥ M(b).

En términos más intuitivos, esto quiere decir que si un recurso puede ser convertido
en otro, la cantidad de recurso existente en el estado inicial debe ser, al menos, tanta
como la del resultante.

2. Cero para estados libres: Si se denota a F como el conjunto que contiene a los
estados libres, entonces puede decirse que las medidas monótonas asignan un valor
nulo a los estados libres ρ ∈ F , ya que estos no poseen recurso:

M(ρ) = 0, ∀ρ ∈ F,

lo cual indica que si un estado es considerado “gratuito”, hablando en términos del
recurso, entonces no debe contribuir al valor de la medida [5].

3. No creación de recursos mediante operaciones libres: Si se tiene una operación
libre C que actúa sobre un estado de recurso, σ /∈ F , esta no debe incrementar el
recurso en dicho estado. Es decir, la medida antes de aplicar la operación debe ser
mayor o igual que la medida final [17]:

M(σ) ≥ M (C(σ)) .

Este principio implica que no se genera recurso adicional al aplicar una operación
libre sobre algún estado de recurso.

Entropía relativa.

Existe una medida dentro de las teorías de recursos conocida como entropía relativa, con
la que se busca cuantificar la cantidad de recurso en un sistema a partir de la desviación
de un estado ρ con respecto a un estado libre σ ∈ S [17, 19].
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La entropía relativa de ρ respecto a σ se define formalmente como [19]:

S(ρ|σ) = Tr[ρ log ρ] − Tr[ρ log σ]. (2.1)

Esta expresión mide la discrepancia entre los estados ρ y σ en términos de la información
cuántica y resulta de utilidad para compararlos entre sí.

De aquí se desprende que:

Si ρ = σ, entonces S(ρ|σ) = 0, lo que indica que ambos estados son idénticos.

Si ρ y σ son muy diferentes, S(ρ|σ) toma valores grandes, reflejando una gran
discrepancia entre ellos.

No obstante, esta medida podría no ser suficiente, de modo que es de utilidad calcular la
desviación entre un estado ρ y un conjunto de estados libres S, lo cual se logra a través de
la distancia de entropía relativa, definida como:

Er(ρ) = ı́nf
σ∈S

S(ρ|σ). (2.2)

Aquí, ı́nf quiere decir “ínfimo”, es decir, el valor mínimo posible de S(ρ|σ) cuando σ
varía dentro del conjunto de estados S. Esta medida cuantifica que tan diferente es ρ del
conjunto de estados libres S a través de encontrar el estado σ ∈ S más cercano a ρ en
términos de la entropía relativa. De esta manera, si ρ ∈ S, entonces Er(ρ) = 0, pero si
resulta que ρ /∈ S, entonces Er(ρ) > 0. Cabe mencionar que la entropía relativa de un
recurso es una medida monótona [18].

Para conocer la posibilidad de transformar n copias de un estado ρ en m copias de otro,
por ejemplo σ, lo cual es una tarea fundamental en las Teorías de Recursos Cuánticos
(TRC) y cuya tasa de conversión óptima se cuantifica en el límite asintótico de muchas
copias, se introduce y estudia el comportamiento de la entropía relativa regularizada. Esta
medida se define precisamente considerando un gran número de copias del estado

Para conocer la posibilidad de transformar n copias de un estado ρ en m copias de otro,
por ejemplo σ, se estudia el comportamiento de la distancia de entropía relativa para una
cantidad muy grande de copias de dicho estado. El motivo de utilizar una gran cantidad
de copias es por que, de esta manera, las tasas de conversión óptimas se vuelven claras y
estables en el límite asintótico (n → ∞), algo que no siempre ocurre al considerar pocas
copias. La medida que cuantifica este recurso en dicho límite asintótico, y que rige las
tasas de conversión es la entropía relativa regularizada, definida como la entropía relativa
por copia en el límite de un número infinito de copias [18, 19]:

E∞
r (ρ) = ĺım

n→∞

Er(ρ⊗n)
n

. (2.3)

Notar que aquí se ha definido ρ⊗n como las n copias del estado ρ, así que no debe con-
fundirse con un exponente.
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La finalidad de buscar transformar un estado en otro es para observar si resulta ser más
fácil de manipular. La tasa de conversión asintótica entre ρ y σ, dada como:

R(ρ → σ) = E∞
r (ρ)

E∞
r (σ) , (2.4)

define el número de copias de σ que pueden producirse por cada copia de ρ en el caso en
que se tienen una gran cantidad de copias [17].

En la teoría cuántica, distinguir que tan diferentes son dos estados es clave para com-
prender la información que transportan. Cuando el objetivo es medir qué tanto un estado
cuántico se aparta del conjunto de estados “libres” o clásicos, la entropía relativa se vuelve
una herramienta muy útil. A través de su forma regularizada, esta medida revela cuánta
que tan útil es un sistema en comparación con otro y qué tan eficiente puede ser su con-
versión en otros recursos. En el límite de muchas copias, estas herramientas nos dicen qué
transformaciones cuánticas son posibles, qué tan costosas son y qué tanto se gana.

2.4.2. Testigos

Los testigos son funciones que están diseñadas para detectar la presencia de un recurso
específico en un estado cuántico debido a que un testigo es un observable [17]. Es por esto
que los testigos son útiles en el sentido experimental ya que si se preparan múltiples copias
de un sistema cuántico en el mismo estado desconocido, un recurso puede detectarse
siempre que un testigo produzca un valor esperado negativo [17]. Las características de
los testigos son:

1. No negatividad en estados libres: Estos testigos están diseñados de forma que su
valor esperado sea positivo para todos los estados pertenecientes al conjunto que
se denominó como S, es decir, los estados libres [17]. Si se denota como W a esta
observable, esto puede expresarse como:

∀ρ ∈ F ⇒ Tr[Wρ] ≥ 0. (2.5)

2. Sensibilidad a los recursos: Como se ha mencionado, estas observables son sensi-
bles a los recursos, es decir, su medición resulta negativa para un estado que contie-
ne el recurso bajo estudio, [17], esto es:

∃σ /∈ F : Tr[Wσ] < 0. (2.6)
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3. Cómputo cuántico de variable continua

Como ya se hizo una breve mención acerca del CCVC, este se basa en sistemas de varia-
bles continuas, como los modos del campo electromagnético o la posición y momento de
una partícula cuántica.

En comparación con el CCVD, donde se manipulan qubits mediante aplicarles puertas ló-
gicas cuánticas específicas, en el CCVC, las manipulaciones a menudo involucran trans-
formaciones de las variables continuas, por ejemplo, comprimir el rango de posibles va-
lores de la intensidad de la luz o desplazar la posición promedio de una partícula [6]. Una
ventaja de este tipo de computación cuántica radica en que es potencialmente escalable y
resistente al ruido [12, 21], no obstante, esta aún no ha alcanzado la universalidad. Es aquí
en donde entra en juego la necesidad de una teoría de recursos que permita hacer cómputo
universal mediante CCVC.

3.1. Teorema de Gottesman-Knill

El teorema de Gottesman-Knill (GK) es un resultado clave en la teoría de la información
cuántica para sistemas de variables discretas. Establece que cualquier algoritmo cuántico
que comience en la base computacional (es decir, estados que representan las configura-
ciones básicas de los qubits, como |0⟩ y |1⟩) y utilice solo una clase restringida de com-
puertas (como Hadamard, fase, CNOT y las compuertas de Pauli), junto con mediciones
proyectivas en la misma base computacional, puede ser simulado eficientemente en una
computadora clásica. Este teorema muestra que una gran clase de algoritmos cuánticos no
proporciona una ventaja de velocidad sobre los procedimientos clásicos [4, 14].

También existe una extensión del teorema GK para variables continuas [4, 6]. Este es-
tablece condiciones para que un proceso de información cuántica de variable continua
pueda ser simulado eficientemente utilizando una computadora clásica. Estas condiciones
generalmente implican lo siguiente, [4, 14]:

Comenzar con estados Gaussianos no entrelazados: El proceso debe iniciarse con
estados Gaussianos, que pueden ser productos de estados de vacío desplazados y
comprimidos.

Realizar solo transformaciones generadas por Hamiltonianos que son cuadráticos
en los operadores canónicos (posición o momento), como:

• Desplazamientos en el espacio fase: Generados por polinomios lineales en q
o p. Son análogos a las compuertas de Pauli, usadas en el CCVD. Estas son
[4, 14]:

X̂(q) = e−(i/ℏ)qp̂, Ẑ(p) = e(i/ℏ)pq̂ con q, p ∈ R. (3.1)
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Estos obedecen la relación X̂(q)Ẑ(p) = e−(i/ℏ)qpẐ(p)X̂(q). Y su acción sobre
la base de posiciones es:

X̂(q′)|q⟩ = |q + q′⟩, Ẑ(p)|q⟩ = e(i/ℏ)qp|q⟩. (3.2)

• Compresión en un oscilador: Este tipo de operaciones se encuentran definidas
por el operador de compresión, dado por la Ec. 1.8, a saber este operador es:
Ŝ(ξ) = e

1
2 (ξ∗â2−ξâ†2).

• Compuerta SUM: Es el análogo, en variable continua, a la compuerta CNOT
de variable discreta, pues sirve como la compuerta de interacción básica para
dos sistemas de osciladores o sistemas de variables continuas [4, 14]. Son
componentes que permiten la simulación clásica eficiente. Formalmente, se
define para dos sistemas i y j como [4, 14]:

SUMij = e−(i/ℏ)q̂i⊗p̂j . (3.3)

La acción de la compuerta SUMij sobre las compuertas de Pauli es:

X̂i(q) ⊗ Îj → X̂i(q) ⊗ X̂j(q) (3.4)

Ẑi(p) ⊗ Îj → Ẑi(p) ⊗ Îj (3.5)

Îi ⊗ X̂j(q) → Îi ⊗ X̂j(q) (3.6)

Îi ⊗ Ẑj(p) → Ẑi(p)−1 ⊗ Ẑi(p) (3.7)

Mediciones en la base de eigenestados de posición o momento, como la detección
homodina, la cual mide una de las dos cuatraturas (posición o momento) de un
modo bosónico [3, 14].

Operaciones del grupo de Clifford, las cuales preservan la Gaussianidad de los es-
tados, por ejemplo:

• Compuerta de fase: Es una operación generada por un Hamiltoniano cuadráti-
co (proporcional a q̂2 o p̂2). Es considerada como una operación de compresión
para variable continua, la cual introduce una fase dependiente del cuadrado de
la posición o el momento [4, 14].

P (η) = exp
(
i

2ℏηq̂
2
)
. (3.8)

Su acción sobre los operadores de Pauli es:

X̂(q) → e
i

2ℏηq̂2
X̂(q)Ẑ(ηq), (3.9)

Ẑ(p) → Ẑ(p). (3.10)
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• Transformada de Fourier: Análoga a la compuerta de Hadamard, en el caso de
los qubits, y es definida como [4, 14]:

F̂ = exp
(
iπ

4ℏ(q̂2 + p̂2)
)
. (3.11)

Su acción sobre los operadores de Pauli es:

X̂(q) → Ẑ(q), (3.12)

Ẑ(p) → X̂(p)−1. (3.13)

Procesos como la teleportación cuántica de variable continua, la criptografía cuántica y
la corrección de errores, basadas en variable continua, pueden satisfacer estas condicio-
nes y, por lo tanto, pueden ser simulados eficientemente de forma clásica. Aunque estos
procesos son fundamentalmente cuánticos e involucran enredamiento, no proporcionan
una aceleración sobre una simulación clásica bajo las restricciones del teorema extendido
[14].

En resumen, el teorema GK y su extensión a variables continuas son herramientas crucia-
les para comprender la frontera entre lo que puede ser simulado eficientemente por una
computadora clásica y lo que requiere recursos cuánticos para una simulación eficiente.

Para lograr la universalidad en la computación cuántica con variables continuas, es nece-
sario combinar operaciones Gaussianas con algún elemento no-Gaussiano, el cual puede
ser una operación unitaria no-Gaussiana (es decir, operaciones generadas por Hamilto-
nianos con polinomios de orden cúbico o superior en los operadores canónicos, como los
estados de fase cúbica), que no preservan el grupo de Pauli [3, 4, 15, 22], también podría
ser un estado no-Gaussiano [15, 23] o una medición del mismo tipo [3, 15] . y están fuera
del grupo de Clifford. Como mención breve, el grupo de Pauli (o también conocido como
el grupo de Heisenberg-Weyl) para variables continuas en n sistemas de osciladores aco-
plados está conformado por los operadores de desplazamiento en el espacio fase (Ec. 3.1)
para los n osciladores [4, 6].

3.2. Estados de fase cúbica |γ, r⟩

Como es bien sabido, un estado físico válido dentro de la teoría cuántica debe ser nor-
malizable, ya que esta propiedad garantiza que las predicciones teóricas puedan ser com-
paradas consistentemente con los resultados experimentales [14]. Esta exigencia cobra
relevancia al considerar ciertas construcciones teóricas que, si bien son útiles conceptual-
mente, no siempre corresponden a estados físicamente realizables.

Un ejemplo representativo es el llamado estado de fase cúbica ideal, el cual surge al aplicar
un operador de fase cúbica, como eiγq̂3 (una operación no-Gaussiana), al estado de vacío
|0⟩. Este estado se define como |γ⟩ = eiγq̂3|0⟩p donde q̂ es el operador de posición y
|0⟩p es el estado de momento igual a cero [3, 15, 23]. Sin embargo, este último no es
normalizable [3, 15, 23], ya que se trata de un eigenestado impropio [23] y se encuentra
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fuera del espacio de Hilbert [3]. Por esta razón, |γ⟩ no puede considerarse un estado físico
válido.

El estado de fase cúbica que resulta útil como recurso en computación cuántica debe ser
físicamente generable. Para ello, se recurre a una versión “imperfecta” del estado ideal,
la cual se obtiene al aplicar la compuerta de fase cúbica, eiγq̂3 , sobre un estado de vacío
comprimido [15, 23]:

|γ, r⟩ = Γ̂(γ)Ŝ(ξ)|0⟩, (3.14)

tal que:
Γ̂(γ) = eiγq̂3

, Ŝ(ξ) = e
1
2 (ξ∗â2−ξâ†2), (3.15)

en donde q̂ es el operador de posición.

Invocando la expresión del operador de compresión actuando sobre el estado de vacío
(estado de vacío comprimido) en términos de estados de Fock (Ec. 1.11):

|ξ⟩ = 1√
cosh r

∞∑
m=0

(−1)m

√
(2m)!

2mm! e
imθ(tanh r)m|2m⟩ = Am(r, θ)|2m⟩. (3.16)

En la que, en la última igualdad, se ha hecho:

Am(r, θ) = 1√
cosh r

∞∑
m=0

(−1)m

√
(2m)!

2mm! e
imθ(tanh r)m.

Se busca realizar una comparación con los resultados mostrados en [23], por lo que se
hará la elección de tomar θ = π, y como ξ = reiθ, entonces se tendrá que ξ = −r, y con
ello Am(r, θ) → Am(r, π).

El paso siguiente para calcular el estado |γ, r⟩ es aplicar el operador de fase cúbica Γ̂(γ)
al estado de vacío comprimido (Ec. 1.11), sin embargo, la naturaleza de este operador
involucra no linealidad, de manera que realizar una expansión en serie del mismo sería
prudente para poder continuar con mayor facilidad:

Γ̂(γ) = eiγx̂3 ≈
∞∑

j=0

(iγx̂3)j

j! =
∞∑

j=0

(iγ)j

j! x̂3j

= 1 + iγx̂3 − γ2

2 x̂
6 − i

γ3

6 x̂
9 + γ4

24 x̂
12 + . . .

(3.17)
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Al calcular la acción consecutiva del operador x̂ de la expansión en serie del operador de
fase cúbica Γ̂(γ) se obtiene que:

x̂Am(r, θ)|2m⟩ = cAm(r, θ)
(√

2m|2m− 1⟩ +
√

2m+ 1|2m+ 1⟩
)
,

en donde:

c =
√
ℏ
2 ,

así, al volver a aplicar x̂:

x̂2Am|2m⟩ = c2Am

(√
2m

√
2m− 1|2m− 2⟩ +

√
2m+ 1

√
2m+ 1|2m⟩

+
√

2m
√

2m|2m⟩ +
√

2m+ 1
√

2m+ 2|2m+ 2⟩
)

= c2Am

(√
(2m)(2m− 1)|2m− 2⟩ + (2m+ 1 + 2m)|2m⟩

+
√

(2m+ 1)(2m+ 2)|2m+ 2⟩
)

= c2Am

(√
(2m)(2m− 1)|2m− 2⟩ + (4m+ 1)|2m⟩

+
√

(2m+ 1)(2m+ 2)|2m+ 2⟩
)
. (3.18)

Por lo que, aplicando x̂ una vez más, se obtiene:

x̂3Am|2m⟩ = c3Am

(√
(2m)(2m− 1)

√
2m− 2|2m− 3⟩

+ (4m+ 1)
√

2m|2m− 1⟩ +
√

(2m+ 1)(2m+ 2)
√

2m+ 2|2m+ 1⟩

+
√

(2m)(2m− 1)
√

2m− 1|2m− 1⟩

+ (4m+ 1)
√

2m+ 1|2m+ 1⟩ +
√

(2m+ 1)(2m+ 2)
√

2m+ 3|2m+ 3⟩
)
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3 CÓMPUTO CUÁNTICO DE VARIABLE CONTINUA

= c3Am

√(2m)(2m− 1)(2m− 2)|2m− 3⟩ +
(

(4m+ 1)
√

2m

+ (2m− 1)
√

2m
)

|2m− 1⟩ +
(

(2m+ 2)
√

2m+ 1

+ (4m+ 1)
√

2m+ 1
)

|2m+ 1⟩ +
√

(2m+ 1)(2m+ 2)(2m+ 3)|2m+ 3⟩



= c3Am

(√
(2m)(2m− 1)(2m− 2)|2m− 3⟩ + 6m

√
2m|2m− 1⟩

+ (6m+ 3)
√

2m+ 1|2m+ 1⟩ +
√

(2m+ 1)(2m+ 2)(2m+ 3)|2m+ 3⟩
)
. (3.19)

Como puede notarse de la expansión de Γ̂(γ) (Ec. 3.17), los operadores que actuarán sobre
el estado | − r⟩ son las potencias 3j-ésimas de x̂. Por lo que, realizar la acción de cada
uno de ellos conllevaría un gran trabajo algebraico para valores grandes de j. Para realizar
esta tarea sería más práctico hacerlo mediante un código computacional.

Una vez que se ha obtenido la expansión del operador Γ̂(γ), se aplica sobre el estado
|ξ⟩, de manera que se logra llegar a una aproximación del estado |γ, r⟩. Los resultados
obtenidos se mostrarán posteriormente.

21 PROYECTO TERMINAL I



4 NEGATIVIDAD DE LA FUNCIÓN DE WIGNER

4. Negatividad de la función de Wigner

La teoría de recursos basada en la negatividad de la función de Wigner tiene como obje-
tivo identificar y cuantificar las propiedades cuánticas que permiten ventajas en tareas de
procesamiento de información cuántica [5].

En esta teoría, los estados libres son aquellos cuya función de Wigner es completamente
positiva en todo el espacio de fase (ver sección 2.3). Este conjunto de estados, denotado
como W+, incluye tanto a los estados Gaussianos puros (aquellos estados |ψ⟩ que pue-
den describirse mediante un operador de densidad de la forma ρ̂ = |ψ⟩⟨ψ|) como a los
mixtos (cuyo operador de densidad se escribe como una suma ponderada de estados |ψi⟩,
es decir: ρ̂ = ∑

i pi|ψi⟩⟨ψi|) [1]. De hecho, Hudson [8] muestra que los estados puros
cuya función de Wigner es positiva son los estados Gaussianos [5]. Sin embargo, también
existen ciertos estados mixtos con función de Wigner positiva que no pueden escribirse
como combinaciones de estados Gaussianos [5]. No obstante, este trabajo se centra en los
estados puros.

Las operaciones libres en esta teoría están compuestas por transformaciones cuadráticas
(como las transformaciones generadas por Hamiltonianos de segundo orden) y por me-
diciones Gaussianas imprecisas, conocidas como mediciones coarse-grained [5]. Estas
últimas son operaciones consideradas dentro de los protocolos operacionales Gaussianos,
relevantes también en la teoría de recursos de la no-Gaussianidad, y se caracterizan por lo
siguiente:

Primero, se realiza una medición Gaussiana (como una medición de la posición o
el momento).

Luego, se aplica una operación condicional que depende del resultado de esa medi-
ción.

En la práctica, los dispositivos de medición tienen resolución finita, por lo que los
resultados no se obtienen como valores exactos, sino agrupados en intervalos. Por
ejemplo, en vez de obtener el valor exacto 1.2345 . . ., se dice que el valor cae en un
rango como [1.2, 1.3]. Esta agrupación implica una imprecisión que puede llevar a
la obtención de un estado mixto como resultado de la medición.

Por otra parte, en esta teoría, los estados de recurso son aquellos estados σ /∈ W+, es
decir, aquellos cuya función de Wigner no es completamente positiva. Además de esto, la
negatividad logarítmica de la función de Wigner (NLW) es la medida monótona dentro de
esta TRC [5].

Sobre la existencia de los testigos, en la página 34 de la Ref.[5], sección E. Witness-based
measures, se menciona que: "Para la teoría de recursos de la no Gaussianidad con los
estados Gaussianos o los estados con función de Wigner no negativa como estados libres,
entonces el teorema del hiperplano separador asegura que cada estado de recurso posee
al menos un testigo”.
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4 NEGATIVIDAD DE LA FUNCIÓN DE WIGNER

4.1. NLW como medida del recurso

La negatividad de la función de Wigner es considerada un recurso cuántico debido a su
profunda conexión con la no-clasicidad de los estados cuánticos. Los estados con fun-
ción de Wigner negativa son, esenciales para obtener una ventaja computacional sobre
los algoritmos clásicos en ciertas tareas [5]. Esto se debe a que las tareas que involucran
únicamente estados con función de Wigner completamente positiva y operaciones que no
pueden crear negatividad, pueden ser simulados eficientemente de manera clásica [15].

Para cuantificar la cantidad de negatividad, y por ende de recurso, presente en un estado,
se recurre a la negatividad logarítmica de la función de Wigner (NLW) ya que cumple con
las propiedades de una medida monótona [5], y para un estado ρ se define como:

NLW(ρ) = log
(∫

|Wρ(q, p)|dqdp
)
, (4.1)

en donde la integral se realiza sobre todo el espacio, mientras que, aunque la base del
logarítmo es irrelevante para la definición y no afecta en sus propiedades, se ha utilizado
el logarítmo en base 2, lo cual coincide con [5].

La NLW se considera computable en el sentido de que su valor puede evaluarse mediante
integración numérica, no obstante, obtener expresiones analíticas puede ser difícil debido
a la necesidad de integrar el valor absoluto de la función de Wigner, W (q, p), lo que
requiere encontrar sus ceros [5].

Cabe mencionar que, debido a la normalización que debe usarse para que un estado cuán-
tico ρ sea válido y tenga un sentido probabilístico, la integral de W (q, p) debe ser igual a
la unidad, es decir:

∫
W (q, p)dqdp = Tr[ρ] = 1

Para el caso en el que ρ sea un estado clásico, por ejemplo algún estado coherente, com-
primido o térmico, su función de Wigner será Gaussiana y completamente positiva, cum-
pliendo con que la integral en la Ec. (4.1) será igual a 1, y con ello haciendo que NLW = 0.

Por otra parte, si el estado en cuestión resulta ser no clásico, como los estados de Fock,
los del tipo de gato de Schrödinger o, como los considerados en este trabajo, estados de
fase cúbica, su función de Wigner podría tomar valores negativos, lo cual reflejaría inter-
ferencia cuántica y, en general, su naturaleza no clásica [24]. En este caso, se obtendría
que

∫
|W (q, p)|dqdp > 1, y consecuentemente, NLW ̸= 0.
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5. Resultados

Con base en la teoría explicada en las secciones previas, se han realizado códigos, escritos
en Python, para obtener, de manera numérica, los valores de la negatividad logarítmica de
la función de Wigner (NLW) para algunos estados de fase cúbica, |γ, r⟩. La elección de los
valores de γ y r no ha sido de manera arbitraria, sino que se busca replicar los resultados
mostrados en [23], además de dar una aproximación del estado que maximiza la NLW.

Como primer paso, se realiza una comparación gráfica de la función de Wigner en el
espacio fase del mismo estado a través de dos códigos: El primero (Sec. A.1) sirve para
poder visualizar la acción aproximada del operador de fase cúbica, Γ̂(γ), sobre el estado
de vacío comprimido (Ec. 1.11) como una expansión en serie, tal como se menciona en
la sección 3.2, utilizando los valores (γ = 0.1, r = 0.6) para los parámetros del estado.
Nota: Este código realiza la Fig. 4, particularmente, la correspondiente al inciso (b) se
calcula mediante la "segunda mitad del código”, la cual se indica con el comentario:
# Grafica 2: Aproximacion por expansion en serie dentro del mismo.

Debido a que en los términos de la serie, (iγx̂)3j

j! , para valores “pequeños” de j, el nume-
rador domina sobre el denominador (para este caso en particular, j < 15), entonces se
requieren valores de j suficientemente grandes para que el denominador sea quien domi-
ne. Este comportamiento puede visualizarse en la Fig. 3, en la que se observa que, a partir
de j = 15, es el denominador quien domina. De aquí se desprende que una elección de
j = 150 será más que suficiente. La función de Wigner asociada al estado de fase cúbica
aproximado por este método puede observarse en la Fig. 4(b).

Por otra parte, el segundo código se ha implementado usando la función wigner(), incluida
en la librería QuTiP, la cual puede calcular numéricamente la función de Wigner a tra-
vés de 4 métodos distintos, basados en los estados de Fock, los cuales pueden indicarse
mediante el valor del parámetro method de esta función [25], estos son:

wigner(method='iterative'): Un método iterativo que calcula W (q, p) para cada en-
trada de la matriz de densidad que se le ingrese como parámetro.

wigner(method='laguerre'): Hace una aproximación por medio de los polinomios de
Laguerre.

wigner(method='clenshaw'): La aproximación se hace a través del método de Clenshaw.
Este método se utiliza por defecto si no se especifica el parámetro method [25].

wigner(method='fft'): Se utiliza la transformada rápida de Fourier.

El método que se utilizará en este trabajo es el método de Clenshaw, implementado por
defecto por QuTiP, el cual evalúa series de funciones que satisfacen relaciones de recu-
rrencia (como los polinomios de Laguerre o Hermite). Una relación de recurrencia permite
calcular el siguiente término de una secuencia a partir de términos anteriores [26].
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Figura 3: Se muestra el comportamiento del j-ésimo término de la expansión en serie del
operador Γ̂(γ). A partir del término j = 15, el denominador comienza a dominar sobre el
numerador.

Particularmente, este método es implementado por QuTiP para calcular la función de
Wigner como [25]:

W (q, p) ∝
∑
L

cL
(2x)L

√
L!

, (5.1)

donde los coeficientes cL dependen de la matriz de densidad y polinomios de Laguerre
generalizados. La implementación en QuTiP evalúa esta suma mediante una recurrencia
iterativa hacia atrás mediante un ciclo while. Las ventajas de este método incluyen: estabi-
lidad numérica ya que el método de Clenshaw es generalmente estable para la evaluación
de la suma (en este caso, la suma sobre L), es decir, es bastante insensible a los errores de
redondeo [27], lo cual minimiza la acumulación de estos errores. También tiene la virtud
de ser eficiente computacionalmente al hacer uso de la recursividad [26], además de una
alta precisión que se obtiene con relativamente pocos valores [25, 26]. Mediante el uso de
este método implementado en QuTiP, para los mismos valores de los parámetros (γ, r) se
tiene un resultado similar al obtenido a través del primer código. Este puede visualizarse
en la Fig. 4(a).

Para estos valores específicos de (γ, r), las funciones de Wigner obtenidas son bastante
similares, sin embargo, esto no dicta con certeza que la aproximación de Γ̂(γ) por medio
de una expansión en serie sea adecuada computacionalmente.
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Figura 4: Comparación de la función de Wigner para el estado |γ, r⟩ con (γ = 0.1, r =
0.6) a través de: (a) usar la librería QuTiP y (b) la aproximación en serie del operador
Γ̂(γ). El tamaño del espacio de Fock usado es N = 35.

5.1. Limitaciones numéricas de la expansión de Γ̂(γ)

Para este punto es necesario mencionar las limitaciones observadas. Si se deseara con-
tinuar con el método de la aproximación del operador Γ̂(γ) por medio de una serie de
Taylor, se encuentra una limitante computacional conforme el valor de γ incrementa. En
la Fig. 4 se ha utilizado un espacio de Hilbert de N = 35 dimensiones, y los parámetros
(γ = 0.1, r = 0.6), mientras que el orden de la expansión se ha tomado con base en
el resultado que se muestra en la Fig. 3, lo cual genera elementos del orden de x̂450, es
decir j = 150. Esto con el fin de obtener una buena aproximación además de que, con-
siderando la ecuación 1.11, se ha hecho m = 5 (este valor se ha elegido debido a que
en realidad no hay una gran diferencia entre tomar m = 5 o cualquier otro valor mayor,
por ejemplo m = 15, sin embargo, este último requiere un espacio de Fock mayor, ya
que, en este caso, se requieren 2m + 1 = N dimensiones debido a que se requiere por lo
menos una dimensión en el espacio de Hilbert para poder ejecutar el código, por lo tanto
si m = 0 → N = 1). Cabe decir que, a menos que se especifiquen otros valores para los
parámetros mencionados, por ahora se tomarán estos como fijos.

Ahora, si se incrementa el valor de γ, el resultado es cada vez menos semejante a lo que se
esperaría. Un ejemplo de esto se ve claramente al intentar aproximar la función de Wigner
para otros valores de parámetros, por ejemplo: (γ = 0.4, r = 0.8) (el resto de parámetros
se han mantenido fijos). Con estos valores, se esperaría un resultado similar al de la Fig.
7(a), el cual coincide, visualmente, con lo reportado en [23] pero lo que se obtiene se
puede observar en la Fig. 5(b).

Este resultado ha incitado a preguntarse: ¿acaso debe considerarse una mayor cantidad
de dimensiones del espacio de Hilbert para lograr una mejor aproximación? Esta pre-
gunta ha sugerido revisar los resultados que se obtendrían para distintas cantidades de
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Figura 5: Comparación de la función de Wigner para el estado |γ, r⟩ con (γ = 0.4, r =
0.8) a través de: (a) usar la librería QuTiP y (b) la aproximación en serie del operador
Γ̂(γ). El espacio de Fock usado es N = 35.

dimensiones, N . Se ha encontrado que para N ≥ 17, los valores divergen (Fig. 6). En
este conjunto de gráficas puede verse que, si se toma N = 35 (como se ha hecho para las
gráficas de la Fig. 4), este método da una muy mala aproximación, de modo que para las
gráficas de la Fig. 5 se ha tenido que usar N = 15, y aún con esto, el resultado no es para
nada cercano a lo esperado con ninguno de los dos métodos (expansión en serie de Γ̂(γ)
o utilizando QuTiP).

Esta mala aproximación se debe a un desbordamiento en el cálculo ya que el término
x̂3j actúa en un espacio de Fock de dimensión finita (N ), y su norma ∥x̂3j∥ escala como
O(N3j/2). Para valores de γ ≥ 0.2 y N = 15, escala más rápidamente que para γ = 0.1,
de modo que, en algún momento, se produce el desbordamiento para cierto valor de j, (el
cual sucede de manera más rápida conforme N sea mayor) antes de que el denominador
comience a dominar sobre el numerador y se logre la convergencia. Es decir, para valores
cada vez mayores de γ, se requieren valores cada vez más grandes de j para lograr la
convergencia, sin embargo estos valores grandes de j causan el desbordamiento.
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Figura 6: Función de Wigner para la aproximación del estado |γ, r⟩ con (γ = 0.4, r = 0.8)
por medio de una serie. Se usan dimensiones diferentes del espacio de Fock (N ).

Figura 7: Comparación de la función de Wigner para el estado |γ, r⟩ con (γ = 0.4, r =
0.8) a través de: (a) usar la librería QuTiP y (b) la aproximación en serie del operador
Γ̂(γ) (se muestra en blanco debido a que, para este espacio de Fock, N = 400, ya se ha
llegado al desbordamiento numérico).
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Figura 8: Funciones de Wigner bajo el efecto de incrementar r, para un mismo valor de
γ en el estado |γ, r⟩. Cada renglón inicia con el estado de vacío y, a la derecha, se sigue
mantener se mantiene fijo un mismo valor de γ mientras, para cada uno, se incrementa r.

En vista de estas limitaciones, el uso de las funciones predefinidas que están incluidas en
la librería QuTiP, simplifica bastante el código necesario para la obtención de las funcio-
nes de Wigner para |γ, r⟩ con distintos parámetros, de manera que se trabajará con esta
librería, y aprovechando su estabilidad, ahora los estados se aproximarán con un espacio
mucho más grande, de N = 400 dimensiones, para mejorar la precisión. Como ya se
mencionó antes, se continuará con el método de Clenshaw (implementado en QuTiP) para
calcular las funciones de Wigner ya que para excitaciones grandes (> 50) éste método es
rápido y numéricamente estable [25]. Las gráficas de la Fig. 7 se han hecho considerando
N = 400. Particularmente la Fig. 7(b) muestra lo que podría extrapolarse a partir de la
Fig. 6: Para un espacio de Hilbert de este tamaño, el método de la aproximación en serie
de Γ̂(γ) ha provocado un desbordamiento numérico.

En las figuras 8 y 9 se muestran un conjunto de funciones de Wigner para distintos valores
de (γ, r) de tal modo que sirvan para obtener una idea del efecto que tiene variar alguno
de estos parámetros mientras el otro se mantiene fijo.
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Figura 9: Funciones de Wigner bajo el efecto de incrementar γ, para un mismo valor de
r en el estado |γ, r⟩. Cada renglón inicia con el estado de vacío y, a la derecha, se sigue
mantener fijo un mismo valor de r mientras, para cada uno, se incrementa γ.
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De manera cualitativa, puede notarse en la Fig. 8 que, para algún valor fijo de γ, incremen-
tar r “expande” horizontalmente la cuasi-distribución, lo cual es esperado debido a que es
una compresión. Mientras que, de la Fig. 9, puede verse que el efecto de incrementar γ,
manteniendo una r fija, es que aparecen patrones de “media luna” para valores tanto posi-
tivos (zonas rojas) como negativos (zonas azules). Estos patrones incrementan conforme
la cubicidad (γ) crece. De hecho, se observa que si la cubicidad es no nula, comienzan a
aparecer los valores negativos para la función de Wigner. Además, es notable que, una vez
que existe cubicidad, la negatividad de la función aumenta si se incrementa cualquiera de
los dos parámetros, aunque lo hace en mayor medida si la cubicidad es el parámetro que
se incrementa.

Es prudente mencionar que el “ruido” en la función de Wigner obtenida para los valores
γ = r = 1.2 (Fig. 9(I)) puede reducirse incrementando la dimensionalidad del espacio
de Hilbert utilizado. No obstante, aún utilizando un espacio N = 2000 el ruido persiste
y para valores todavía mayores, por ejemplo N = 4000, ya se tiene un desbordamiento
numérico para el método que se esta usando en este trabajo, además de requerir un lapso
mucho mayor para la ejecución del código. En vista de esto, se continuará trabajando con
el espacio de N = 400.

5.2. NLW para algunos estados

Ya se ha observado, de manera cualitativa, que incrementar alguno de los dos parámetros
de los estados de fase cúbica incrementa las regiones negativas de la función W (q, p),
entonces, una vez obtenida esta función, se procede a calcular su negatividad logarítmica
(NLW), la cual, como se mencionó en la sección 4.1, es adecuado calcularla de manera
numérica. Así, también se ha escrito un código en Python que realiza la tarea (Sec. A.2),
además de calcular |W (q, p)|, el cual, en caso de existir negatividad en algún estado, de-
berá ser superior a la unidad, indicando la presencia del recurso en dicho estado. También
se calcula la integral de la función de Wigner, la cual deberá ser W (q, p) ≈ 1, para todos
los casos, debido a la naturaleza de la normalización.

En la Tabla 1 se muestran estos resultados para algunos estados elegidos de manera arbi-
traria pero que contienen a los mencionados en la Ref.[23]. Si se observa, es notorio lo
que se manifestó algunos párrafos antes acerca de que γ tiene mayor influencia sobre la
NLW que r, particularmente, NLW0.1,0.6 ≈ 0.3779 < NLW0.6,0.1 ≈ 0.4947.
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γ r NLWγ,r

∫
|Wγ,r(q, p)|dqdp

∫
Wγ,r(q, p)dqdp

0.1 0.6 0.3779 1.2994 0.9999

0.4 0.8 1.3423 2.5356 0.9940

0.1 0.1 0.0211 1.0148 0.9999

0.1 0.8 0.6424 1.5609 0.9999

0.05 0.1 0.0005 1.0004 0.9999

0.05 0.6 0.1431 1.1043 0.9999

0.6 0.1 0.4947 1.4090 0.9999

Tabla 1: Valores de la Negatividad Logarítmica de la función de Wigner (NLW ) y las
integrales asociadas para diferentes parámetros γ y r.

Figura 10: Evolución, en función de la dimensión del espacio de Hilbert (N ), de laNLW ,
y las integrales W (q, p) y |W (q, p)| para el estado con γ = 0.1 y r = 0.6

Estos resultados incitan, naturalmente, a la pregunta: ¿cual es el estado de fase cúbica con
mayor cantidad de recurso?, es decir, ¿cual combinación de (γ, r) es la que maximiza la
NLW? Como ya se ha mencionado, la dimensión del espacio de Hilbert que se utilice para
las aproximaciones es un elemento clave que influye en la precisión de los resultados, lo
cual conlleva a una pregunta más: ¿Qué valor de N dará una buena aproximación para
estos estados con el fin de asegurar que los resultados obtenidos para la NLW sean muy
cercanos a los que se obtendrían si se utilizase un espacio de Hilbert infinito? Particular-
mente, ¿haber hecho N = 400 es una buena elección?
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Claramente, para dar respuesta a la primer pregunta, es necesario responder esta última.
Esta puede obtenerse a partir de estimar una N suficientemente grande como para hacer
que

∫
W (q, p)dqdp ≈ 1. En este caso, resulta de bastante utilidad observar la evolución de

la NLW,
∫

|W (q, p)|dqdp y
∫
W (q, p)dqdp en función de N . De manera particular, para

el estado de fase cúbica con (γ = 0.1, r = 0.6), esta evolución se muestra en la Fig. 10,
para el cual se encontró que:

Prom± σ

NLW0.1,0.6 0.379660 ± 0.017603∫
|W0.1,0.6(q, p)|dqdp 1.301129 ± 0.015714∫
W0.1,0.6(q, p)dqdp 0.999985 ± 0.000046

Tabla 2: Estadísticas para |γ, r⟩ con (γ = 0.1, r = 0.6).

Por otra parte, también se ha hecho lo mismo para el estado con los parámetros más gran-
des que se considerarán, a saber, γ = 0.5 y r = 1.7. Así, para este estado, la evolución
con respecto a N se observa en la Fig. 11, mientras que los promedios hallados para este
estado se muestran en la Tabla 3. Estos valores surgen a partir del hecho de que, en las
referencias utilizadas, se ha encontrado que el límite experimentalmente alcanzado para
la amplitud de compresión es r ≈ 1.7 [12], mientras que teóricamente se han explorado
valores de γ ≈ 0.5 (aunque esto último, para un valor de r ≈ 0.58) [12].

Prom± σ

NLW0.5,1.7 2.080062 ± 0.263242∫
|W0.5,1.7(q, p)|dqdp 4.286781 ± 0.609970∫
W0.5,1.7(q, p)dqdp 0.758956 ± 0.058115

Tabla 3: Estadísticas para el estado de fase cúbica con γ = 0.5 y r = 1.7.
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Figura 11: Evolución, en función de la dimensión del espacio de Hilbert (N ), de la NLW,
y las integrales de W (q, p) y |W (q, p)| para el estado con γ = 0.5 y r = 1.7.

Debido a que el valor promedio de
∫
W0.5,1.7(q, p)dqdp < 1, el estado |γ, r⟩ con valores

(γ = 0.5, r = 1.7) no puede ser considerado como un estado válido para nuestros pro-
pósitos. Esto es así ya que, al no poder incrementar los límites de integración, el valor de
esta integral no tiende a 1 (incrementarlos provoca un desbordamiento numérico, por lo
que actualmente se han tomado los límites tales que q ∈ [−6, 6] y p ∈ [−5, 26]). Siendo
así que sería de esperarse que valores mayores de (γ, r) tampoco tiendan a la unidad, de
modo que este par de valores pueden ser buenos candidatos para ser valores máximos a
considerar para estos parámetros.

Entonces, para responder la pregunta sobre los valores que maximizan la NLW se ha re-
currido a un código que realice un barrido de todas las combinaciones posibles para los
pares (γ, r) tales que γ ∈ [0.01, 0.05] y r ∈ [0.1, 1.7] con pasos discretos de 0.01 entre
cada valor de γ y de 0.1 entre cada valor de r. Esto se ha graficado en un mapa de ca-
lor (Fig. 12), para el cual, además de buscar aquel estado que maximiza la NLW , se ha
condicionado para que cumpla con

∫
W (q, p)dqdp ≈ 1 ± 0.02, es decir, se ha dado (ar-

bitrariamente) una tolerancia del 2 %. Así se han encontrado que los parámetros óptimos
son γ = 0.29 y r = 1.3, dando los valores mostrados en la Tabla 4:

NLWopt ≈ 1.9019∫
|Wopt(q, p)|dqdp ≈ 3.7371∫
Wopt(q, p)dqdp ≈ 0.9827

Tabla 4: Estadísticas para el estado de fase cúbica con parámetros óptimos encontrados
(γ = 0.29, r = 1.3).
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Figura 12: Mapa de calor para diferentes valores de (γ, r). En color gris se muestran los
estados que no cumplen con la normalización, es decir:

∫
W (q, p)dqdp ̸≈ 1.00 ± 0.02.

Este mapa de calor (Fig. 12) también muestra los dos estados mencionados en la Ref. [23],
es decir, aquellos con parámetros (γ = 0.1, r = 0.6) y (γ = 0.4, r = 0.8) (en recuadros
color gris con línea punteada y sólida, respectivamente), además de remarcar el estado
que maximiza la NLW (color rojo) y el estado que combina los límites experimentalmente
alcanzados (de manera independiente) para la amplitud de compresión r = 1.7 [12], y la
cubicidad γ = 0.11 [28, 29] (color verde). Debido a que se ha respetado la condición de
que el valor de la normalización esté dentro de la tolerancia del 2 % otorgada, este último
estado se ha recorrido al correspondiente a los valores (γ = 0.11, r = 1.3), pues, como
puede verse en el mapa de calor, el estado con parámetros (γ = 0.11, r = 1.7) cae en
la región grisácea, de modo que no cumple con el criterio de normalización impuesto,
nuevamente, debido a que los límites de integración no son lo suficientemente “grandes”
como para capturar toda la información del estado.
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La información obtenida para este estado se muestra en la Tabla 5:

NLWexp1 ≈ 1.9537∫
|Wexp1(q, p)|dqdp ≈ 3.8736∫
Wexp1(q, p)dqdp ≈ 0.8869

Tabla 5: Información para el estado de fase cúbica con parámetros máximos alcanzados
experimentalmente (γ = 0.11, r = 1.7). Este estado no cae dentro de la tolerancia otor-
gada a la normalización.

Por otra parte, para el estado que si ha cumplido con la normalización, es decir, el que
tiene los valores (γ = 0.11, r = 1.3), la información se muestra en la Tabla 6:

NLWexp2 ≈ 1.4755∫
|Wexp2(q, p)|dqdp ≈ 2.7808∫
Wexp2(q, p)dqdp ≈ 0.9808

Tabla 6: Información para el estado de fase cúbica con parámetros cercanos a los máxi-
mos alcanzados experimentalmente (γ = 0.11, r = 1.3). Este estado si cae dentro de la
tolerancia otorgada a la normalización.

Otro resultado que puede ser interesante, es visualizar la evolución de la NLW en fun-
ción de los parámetros (γ, r), variando únicamente uno de los dos y manteniendo fijo el
otro. Esto se ha hecho únicamente para tres valores de γ y r, particularmente, los co-
rrespondientes a los mencionados en la Ref.[23] y los que maximizan la NLW, según lo
encontrado en el mapa de calor de la Fig. 12. Gráficamente esto aparece en las Figs. 13 y
14.

Las últimas dos figuras (13 y 14) muestran la evolución de la NLW en función de r y γ,
respectivamente. En ellas puede observarse que, para valores fijos de cubicidad, conforme
esta es mayor, la NLW también lo será; a partir de esto, conforme el valor de r se incre-
menta, nuevamente la NLW lo hará de manera casi lineal. Sin embargo, este incremento
contrasta con el que se tiene si, en lugar de γ, es r el parámetro fijo, pues el incremento de
la negatividad logarítmica conforme la cubicidad aumenta sucede de manera más rápida
para valores pequeños de γ siguiendo una forma parecida al crecimiento que muestra la
función raíz cuadrada.
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Figura 13: Evolución de NLW(r) para los valores fijos de γ = 0.1, γ = 0.29 y γ =
0.5. Las zonas grises son asociadas a los estados que no cumplen con la normalización
buscada.

Figura 14: Evolución de NLW(γ) para los valores fijos de r = 0.6, r = 0.9 y r = 1.3. Las
zonas grises son asociadas a los estados que no cumplen con la normalización buscada.
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6. Conclusiones

El objetivo principal, además de caracterizar los estados de fase cúbica, ha sido determinar
la combinación de valores (γ, r) que maximicen el recurso presente en este tipo de estados
mediante la negatividad logarítmica de la función de Wigner, lo cual ha podido lograrse
de manera local en un rango específico de valores para estos parámetros, siendo limitados
por errores numéricos.

Como ya se ha comentado, existen diferentes factores que juegan un papel importante en
la precisión de los resultados que pueden obtenerse sobre la NLW calculada mediante los
métodos empleados en este trabajo. Uno de ellos tiene que ver con el tamaño del espacio
de Hilbert, el cual debe ser lo suficientemente grande como para poder generar una buena
aproximación de la función de Wigner de los estados de fase cúbica. Sin embargo, esto no
aplica para la aproximación de Γ̂(γ) mediante una serie de Taylor, ya que la convergencia
de la serie no se alcanza antes del desbordamiento numérico para valores “grandes” de N .
No obstante, al hacer uso de QuTiP, parece ser que la elección de N = 400 ha entregado
resultados razonables que no distan demasiado de los que se obtienen mediante espacios
mucho mayores y que, por ende, son más demandantes de poder de cómputo.

Por otra parte, este no es el único factor, pues el espacio sobre el que se integra para
obtener W (q, p) también es relevante, ya que, para distintos valores de γ y r, se requie-
re integrar sobre espacios más grandes. No obstante, esto provoca un desbordamiento
computacional, por lo que no es posible incrementar los límites de integración arbitraria-
mente. Esto se ha reflejado en las zonas grises en el mapa de calor mostrado (Fig. 12)
ya que, si se pudieran incrementar estos límites, es probable que pudieran cumplir con la
tolerancia otorgada a la normalización del estado, lo cual, podría resultar en que el estado
que maximice la NLW sea distinto al que se encontró actualmente.

Dentro de los límites con los que se ha podido trabajar en este estudio, se ha observado que
el hecho de incrementar alguno de los dos parámetros en el estado de fase cúbica (γ, r)
incrementa la negatividad de la función de Wigner, siempre y cuando γ ̸= 0, aunque el
valor de este último es el que tiene más peso dentro de dicha negatividad.

Para mejorar los resultados obtenidos en el mapa de calor de la Fig. 12 podrían intentarse
algunas cosas como escribir el código en otro lenguaje o, en lugar de utilizar métodos
numéricos para aproximar el valor de cada función de Wigner, utilizar una expresión ana-
lítica. Otro camino puede ser investigar los estados de fase cúbica para otras distribuciones
de cuasi-probabilidad, como las funciones de Husimi y Glauber-Sudarshan.
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A. Códigos

Para poder ejecutar los códigos, escritos en Python, es necesario instalar la librería QuTiP
mediante:

pip install qutip

A.1. Comparación entre QuTiP y expansión en serie

Para realizar las figuras 4, 5 y 7 se ha utilizado el siguiente código, aunque con los valores
de N = 35, 15 y 400, respectivamente:

import numpy as np
import matplotlib.pyplot as plt
from qutip import *
from scipy.special import factorial

N = 35
gamma = 0.1
r = 0.6
theta = np.pi
c = 1/np.sqrt(2)
xvec = np.linspace(-6, 6, 100)
yvec = np.linspace(-5, 26, 100)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 8))
plt.subplots_adjust(wspace=0.3)

# Gráfica 1: Cálculo directo con QuTiP
a = destroy(N)
adag = a.dag()
x = c * (a + adag)

Gamma = (1j * gamma * x**3).expm()
xi = r * np.exp(1j * theta)
S = squeeze(N, xi)
vacuum = basis(N, 0)
state = Gamma * S * vacuum

W1 = wigner(state, xvec, yvec, method='iterative')
W1_max = np.max(W1).round(4)
W1_min = np.min(W1).round(4)

cont1 = ax1.contourf(xvec, yvec, W1, 100, cmap="seismic",
levels=np.linspace(-1/np.pi, 1/np.pi, 400))

ax1.set_title(f'Cálculo directo con QuTiP\n$\gamma = {gamma}$, $r = {r}$', pad=15)
ax1.set_xlabel('$q$', fontsize=12)
ax1.set_ylabel('$p$', fontsize=12)

ax1.text(0.05, 0.95,
f"Max: {W1_max}\nMin: {W1_min}",
transform=ax1.transAxes,
color='white',
fontsize=12,
verticalalignment='top',
bbox=dict(facecolor='black', alpha=0.5))

ax1.text(-0.1, 1.05, '(a)', transform=ax1.transAxes,
fontsize=16, fontweight='bold', va='top')

# Gráfica 2: Aproximación por expansión en serie
m_max = 5
j_max = 150
N_approx = 35
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def squeezed_vacuum_state(r, theta, m_max, N):
states = []
coefficients = []
for m in range(m_max + 1):

num = (-1)**m * np.sqrt(factorial(2*m))
den = 2**m * factorial(m)
coeff = num / den * np.exp(1j * m * theta) * (np.tanh(r))**m
coeff /= np.sqrt(np.cosh(r))
coefficients.append(coeff)
state = basis(N, 2*m)
states.append(state)

return sum([coeff * state for coeff, state in zip(coefficients, states)])

def gamma_operator_expansion(gamma, j_max, N):
a = destroy(N)
adag = a.dag()
x = c * (a + adag)
gamma_op = 0
for j in range(j_max + 1):

term = (1j * gamma * x**3)**j / factorial(j)
gamma_op += term

return gamma_op

xi_state = squeezed_vacuum_state(r, -np.pi, m_max, N_approx)
gamma_op = gamma_operator_expansion(gamma, j_max, N_approx)
gamma_r_state = gamma_op * xi_state

W2 = wigner(gamma_r_state, xvec, yvec, method='iterative')
W2_max = np.max(W2).round(4)
W2_min = np.min(W2).round(4)

cont2 = ax2.contourf(xvec, yvec, W2, 100, cmap="seismic",
levels=np.linspace(-1/np.pi, 1/np.pi, 400))

ax2.set_title(f'Aproximación por expansión en serie\n$\gamma = {gamma}$, $r = {r}$', pad=15)
ax2.set_xlabel('$q$', fontsize=12)
ax2.set_ylabel('$p$', fontsize=12)

ax2.text(0.05, 0.95,
f"Max: {W2_max}\nMin: {W2_min}",
transform=ax2.transAxes,
color='white',
fontsize=12,
verticalalignment='top',
bbox=dict(facecolor='black', alpha=0.5))

ax2.text(-0.1, 1.05, '(b)', transform=ax2.transAxes,
fontsize=16, fontweight='bold', va='top')

cbar_ax = fig.add_axes([0.25, 0.01, 0.5, 0.03])
cbar = fig.colorbar(cont1, cax=cbar_ax, orientation='horizontal',

label="$W(q,p)$", extend="both")
cbar.set_ticks([-1/np.pi, -0.2, -0.1, 0, 0.1, 0.2, 1/np.pi])
cbar.set_ticklabels(['-$1/\pi$', '-0.2', '-0.1', '0', '0.1', '0.2', '$1/\pi$'])

plt.show()
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A.2. NLW e integrales asociadas para (γ, r) específicas.

import numpy as np
import qutip as qt

def wigner_log_negativity_sum(state, xvec, yvec):
W = qt.wigner(state, xvec, yvec)

dx = xvec[1] - xvec[0]
dy = yvec[1] - yvec[0]

I_abs = np.sum(np.abs(W)) * dx * dy
I_total = np.sum(W) * dx * dy

WLN = np.log2(I_abs)

return WLN, I_abs, I_total

N = 400
gamma = 0.1
r = 1.2
theta = np.pi
c = 1 / np.sqrt(2)

xvec = np.linspace(-5, 5, 100)
yvec = np.linspace(-5, 25, 100)

a = qt.destroy(N)
adag = a.dag()
x = c * (a + adag)

Gamma = (1j * gamma * x**3).expm()
xi = r * np.exp(1j * theta)
S = qt.squeeze(N, xi)
vacuum = qt.basis(N, 0)
state = Gamma * S * vacuum

WLN, I_abs, I_total = wigner_log_negativity_sum(state, xvec, yvec)

print(f"Negatividad Logarítmica de Wigner (WLN): {WLN}")
print(f"Integral |W(q, p)|: {I_abs} (Debe ser > 1 si hay negatividad)")
print(f"Integral W(q, p): {I_total} (Debe ser 1)")
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A.3. Funciones W (q, p) bajo el efecto de variar γ ó r

Las figuras8 y 9 se han realizado mediante el siguiente código, con ligeras variaciones en
las listas que contienen los valores de γ y r, según el parámetro que se mantiene fijo y el
que varía:

import numpy as np
import matplotlib.pyplot as plt
from qutip import *

N = 400
theta = np.pi
c = 1/np.sqrt(2)
xvec = np.linspace(-6, 6, 100)
yvec = np.linspace(-5, 26, 100)

# Parámetros a variar
gamma_groups = [0.1, 0.3, 0.4]
r_values = [0.0, 0.1, 0.6, 1.2]

labels = [f'({chr(97 + i)})' for i in range(12)]

fig, axes = plt.subplots(3, 4, figsize=(20, 12))
plt.subplots_adjust(wspace=0.4, hspace=0.5)

a = destroy(N)
adag = a.dag()
x = c * (a + adag)

for row, gamma in enumerate(gamma_groups):
for col, r in enumerate(r_values):

ax = axes[row, col]
label_idx = row * 4 + col

vacuum = basis(N, 0)

if r == 0.0:
state = vacuum
title = f'Vacío\n($\\gamma = 0$, $r = 0$)'

else:
Gamma = (1j * gamma * x**3).expm()
xi = r * np.exp(1j * theta)
S = squeeze(N, xi)
state = Gamma * S * vacuum
title = f'$\\gamma = {gamma}$, $r = {r}$'

W = wigner(state, xvec, yvec, method='clenshaw')
W_max = np.max(W).round(4)
W_min = np.min(W).round(4)

cont = ax.contourf(xvec, yvec, W, 100, cmap="seismic",
levels=np.linspace(-1/np.pi, 1/np.pi, 400))

ax.set_title(title, pad=15)
ax.set_xlabel('$q$', labelpad=10, fontsize=12)
ax.set_ylabel('$p$', labelpad=10, fontsize=12)

if r == 0.0:
ax.set_xlim(-6, 6)
ax.set_ylim(-6, 6)

else:
ax.set_xlim(-6, 6)
ax.set_ylim(-5, 26)

ax.text(0.05, 0.85,
f"Max: {W_max}\nMin: {W_min}",
transform=ax.transAxes,
color='white',
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fontsize=9,
bbox=dict(facecolor='black', alpha=0.5))

ax.text(-0.1, 1.15, labels[label_idx], transform=ax.transAxes,
fontsize=12, fontweight='bold', va='top', ha='right')

cbar_ax = fig.add_axes([0.25, 0.03, 0.5, 0.02])
cbar = fig.colorbar(cont, cax=cbar_ax, orientation='horizontal', label="$W(q,p)$")
cbar.ax.set_xlabel("$W(q,p)$", fontsize=12)
cbar.set_ticks([-1/np.pi, -0.2, -0.1, 0, 0.1, 0.2, 1/np.pi])
cbar.set_ticklabels(['-$1/\pi$', '-0.2', '-0.1', '0', '0.1', '0.2', '$1/\pi$'], fontsize=12)

plt.show()
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A.4. Evolución de la NLW en función de N

Las figuras 10 y 11 se han hecho a partir del siguiente código, variando únicamente los
valores de los parámetros (γ, r):

import numpy as np
import qutip as qt
import matplotlib.pyplot as plt

def wigner_log_negativity_sum(state, xvec, yvec):
W = qt.wigner(state, xvec, yvec)
dx = xvec[1] - xvec[0]
dy = yvec[1] - yvec[0]
I_abs = np.sum(np.abs(W)) * dx * dy
I_total = np.sum(W) * dx * dy
WLN = np.log2(I_abs)
return WLN, I_abs, I_total

gamma = 0.5
r = 1.7
theta = np.pi
c = 1 / np.sqrt(2)
xvec = np.linspace(-6, 6, 100)
yvec = np.linspace(-5, 26, 100)

N_values = np.arange(5, 405, 5)
WLN_list = []
I_abs_list = []
I_total_list = []

for N in N_values:
try:

a = qt.destroy(N)
adag = a.dag()
x = c * (a + adag)

Gamma = (1j * gamma * x**3).expm()
xi = r * np.exp(1j * theta)
S = qt.squeeze(N, xi)
vacuum = qt.basis(N, 0)
state = Gamma * S * vacuum

WLN, I_abs, I_total = wigner_log_negativity_sum(state, xvec, yvec)
WLN_list.append(WLN)
I_abs_list.append(I_abs)
I_total_list.append(I_total)

print(f"N = {N}: WLN = {WLN:.6f}, I_abs = {I_abs:.6f}, I_total = {I_total:.6f}")
except Exception as e:

print(f"Error en N = {N}: {str(e)}")
WLN_list.append(np.nan)
I_abs_list.append(np.nan)
I_total_list.append(np.nan)

fig, ax1 = plt.subplots(figsize=(12, 6))

color_WLN = 'tab:blue'
ax1.set_xlabel('Dimensión del espacio (N)', fontsize=12)
ax1.set_ylabel('Negatividad Logarítmica de Wigner ($NLW$)', color=color_WLN, fontsize=12)
ax1.plot(N_values, WLN_list, 'o-', color=color_WLN, label='$NLW$', markersize=5)
ax1.tick_params(axis='y', labelcolor=color_WLN)
ax1.grid(True, linestyle='--', alpha=0.6)

ax2 = ax1.twinx()
color_I_abs = 'tab:red'
ax2.set_ylabel('Integral de $|W(q, p)|$', color=color_I_abs, fontsize=12)
ax2.plot(N_values, I_abs_list, 's-', color=color_I_abs, label='$|W(q, p)|$', markersize=5)
ax2.tick_params(axis='y', labelcolor=color_I_abs)
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ax3 = ax1.twinx()
color_I_total = 'tab:green'
ax3.spines['right'].set_position(('outward', 60))
ax3.set_ylabel('Integral de $W(q, p)$', color=color_I_total, fontsize=12)
ax3.plot(N_values, I_total_list, 'd-', color=color_I_total, label='$W(q, p)$', markersize=5)
ax3.tick_params(axis='y', labelcolor=color_I_total)

ax1.set_ylim(0, max(WLN_list) * 1.1)
ax2.set_ylim(1, max(I_abs_list) * 1.1)
ax3.set_ylim(min(I_total_list), 1.01)

plt.title(f'$NLW$ del estado $|\gamma, r \\rangle$ con $\gamma = {gamma}$ y $r = {r}$',
fontsize=14)

fig.legend(loc=(0.6, 0.9), bbox_to_anchor=(0.9, 0.9))
fig.tight_layout()
plt.show()
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A.5. Mapa de calor de NLW(γ, r)

El mapa de calor de la fig. 12 se ha realizado con:
import numpy as np
import qutip as qt
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import pandas as pd

N = 400
theta = np.pi
c = 1/np.sqrt(2)
xvec = np.linspace(-6, 6, 100)
yvec = np.linspace(-5, 26, 100)

gamma_values = np.linspace(0.01, 0.5, 50)
r_values = np.linspace(0.1, 1.7, 17)

NLW_matrix = np.zeros((len(gamma_values), len(r_values)))
I_total_matrix = np.zeros_like(NLW_matrix)
I_abs_matrix = np.zeros_like(NLW_matrix)
Wigner_values = {}

def calcs(N, gamma, r, theta, xvec, yvec):
try:

a = qt.destroy(N)
x = c*(a + a.dag())
state = (1j*gamma*(x**3)).expm() * qt.squeeze(N, r*np.exp(1j*theta)) * qt.basis(N,0)
W = qt.wigner(state, xvec, yvec, method='clenshaw')
dxdy = (xvec[1]-xvec[0])*(yvec[1]-yvec[0])
return np.log2(np.sum(np.abs(W))*dxdy), np.sum(W)*dxdy, np.sum(np.abs(W))*dxdy, W

except:
return np.nan, np.nan, np.nan, np.nan

for i, gamma in enumerate(tqdm(gamma_values, desc="Calculando métricas")):
for j, r in enumerate(r_values):

NLW_matrix[i,j], I_total_matrix[i,j], I_abs_matrix[i,j], W = calcs(N, gamma,
r, theta,
xvec, yvec)

Wigner_values[f"gamma_{gamma:.4f}_r_{r:.4f}"] = W

data = []
for i, gamma in enumerate(gamma_values):

for j, r in enumerate(r_values):
data.append({

'gamma': gamma,
'r': r,
'NLW': NLW_matrix[i,j],
'Integral_W': I_total_matrix[i,j],
'Integral_abs_W': I_abs_matrix[i,j],
'Wigner_values_key': f"gamma_{gamma:.4f}_r_{r:.4f}"

})

df = pd.DataFrame(data)
df.to_csv('ValoresNLW.csv', index=False)

np.savez('Wigner_values.npz', **Wigner_values)

tolerance = 0.02
valid_I_total = np.abs(I_total_matrix - 1) < tolerance

lab1 = '$\gamma=0.1, r=0.6$ (Brunelli)'
lab2 = '$\gamma=0.4, r=0.8$ (Brunelli)'
highlight_states = [

{'gamma': 0.1, 'r': 0.6, 'color': 'gray', 'linestyle': '--', 'label': lab1},
{'gamma': 0.4, 'r': 0.8, 'color': 'gray', 'linestyle': '-', 'label': lab2}

]
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if np.any(valid_I_total):
valid_NLW = np.where(valid_I_total, NLW_matrix, -np.inf)
max_NLW = np.nanmax(valid_NLW)
max_idx = np.where((NLW_matrix == max_NLW) & valid_I_total)
opt_gamma, opt_r = gamma_values[max_idx[0][0]], r_values[max_idx[1][0]]
opt_I_total = I_total_matrix[max_idx[0][0], max_idx[1][0]]
highlight_states.append({

'gamma': opt_gamma,
'r': opt_r,
'color': 'red',
'linestyle': '-',
'label': 'Óptimo global',
'NLW': max_NLW,
'I_total': opt_I_total

})
else:

max_NLW, opt_gamma, opt_r, opt_I_total = np.nan, np.nan, np.nan, np.nan

gamma_mask = (gamma_values >= 0.01) & (gamma_values <= 0.11)
r_mask = (r_values >= 0.1) & (r_values <= 1.7)
experimental_mask = np.outer(gamma_mask, r_mask)

if np.any(valid_I_total & experimental_mask):
valid_exp_NLW = np.where(valid_I_total & experimental_mask, NLW_matrix, -np.inf)
max_exp_NLW = np.nanmax(valid_exp_NLW)
max_exp_idx = np.where((NLW_matrix == max_exp_NLW) & valid_I_total & experimental_mask)
opt_exp_gamma, opt_exp_r = gamma_values[max_exp_idx[0][0]], r_values[max_exp_idx[1][0]]
opt_exp_I_total = I_total_matrix[max_exp_idx[0][0], max_exp_idx[1][0]]
highlight_states.append({

'gamma': opt_exp_gamma,
'r': opt_exp_r,
'color': 'green',
'linestyle': '-',
'label': 'Óptimo experimental',
'NLW': max_exp_NLW,
'I_total': opt_exp_I_total

})

plt.figure(figsize=(14, 9))
cmap = sns.color_palette("viridis", as_cmap=True)
cmap.set_bad(color='lightgrey')

plot_matrix = np.where(valid_I_total, NLW_matrix, np.nan)

ax = sns.heatmap(
plot_matrix,
xticklabels=[f"{r:.2f}" for r in r_values],
yticklabels=[f"{:.2f}" for in gamma_values],
cmap=cmap,
annot=False,
cbar_kws={'label': 'Negatividad Logarítmica de Wigner ($NLW$)'}

)

txt1 = "Negatividad Logarítmica de Wigner ($NLW$) "
txt2 = "para distintas combinaciones de ($\gamma, r$)"
plt.title(txt1, pad=20, fontsize=12)
plt.xlabel("Amplitud de compresión ($r$)", fontsize=12)
plt.ylabel("Cubicidad ($\gamma$)", fontsize=12)

for state in highlight_states:
if 'gamma' in state and 'r' in state:

i = np.where(gamma_values >= state['gamma'])[0][0]
j = np.where(r_values >= state['r'])[0][0]

edgecolor = state['color']
linestyle = state.get('linestyle', '-')
linewidth = 2 if linestyle == '-' else 1.5

ax.add_patch(plt.Rectangle(
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(j, i), 1, 1,
fill=False,
edgecolor=edgecolor,
linestyle=linestyle,
linewidth=linewidth,
label=state.get('label', '')))

info_text = ""
for state in highlight_states[-2:]:

if 'NLW' in state:
info_text += (f"{state['label']}:\n"

f"$NLW$: ${state['NLW']:.3f}$\n"
f"$\gamma = {state['gamma']:.2f}$\n"
f"$r = {state['r']:.2f}$\n"
f"$\int W(q,p)dqdp = {state['I_total']:.3f}$\n\n")

plt.text(1.05, 0.15,
info_text,
transform=ax.transAxes,
color='white',
ha='right', va='center',
bbox=dict(facecolor='black', alpha=0.4))

plt.legend(bbox_to_anchor=(1.05, 1.1), loc='upper right')
plt.tight_layout()
plt.show()
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A.6. Evolución de NLW(γ) y NLW(r)

Las figuras 13 y 14 se han hecho a partir del siguiente código:
import numpy as np
import qutip as qt
import matplotlib.pyplot as plt
from tqdm import tqdm

N = 400
theta = np.pi
c = 1/np.sqrt(2)
xvec = np.linspace(-6, 6, 100)
yvec = np.linspace(-5, 26, 100)

def calculate_WLN(N, gamma, r, theta, xvec, yvec):
try:

a = qt.destroy(N)
x = c*(a + a.dag())
state = (1j*gamma*(x**3)).expm() * qt.squeeze(N, r*np.exp(1j*theta)) * qt.basis(N,0)
W = qt.wigner(state, xvec, yvec)
dxdy = (xvec[1]-xvec[0])*(yvec[1]-yvec[0])
return np.log2(np.sum(np.abs(W))*dxdy)

except:
return np.nan

# 1. Gráfico con gamma
gamma_values = [0.1, 0.5, 1]
r_range = np.linspace(0.1, 1.7, 33)

series_config = {
0: { # = 0.1

'color': 'b',
'marker': 'o',
'special_sections': [

{'start': 1.4, 'end': 1.7, 'color': 'lightgray', 'marker': 'o'}
]

},
1: { # = 0.5

'color': 'g',
'marker': 'o',
'special_sections': [

{'start': 1.1, 'end': 1.7, 'color': 'lightgray', 'marker': 'o'}
]

},
2: { # = 1.0

'color': 'r',
'marker': 'o',
'special_sections': [

{'start': 0.6, 'end': 1.7, 'color': 'lightgray', 'marker': 'o'}
]

}
}

plt.figure(figsize=(10, 6))

print("\nCalculando WLN vs r para diferentes ...")
for idx, gamma in enumerate(gamma_values):

WLN_vs_r = []
for r in tqdm(r_range, desc=f' = {gamma}'):

wln = calculate_WLN(N, gamma, r, theta, xvec, yvec)
WLN_vs_r.append(wln)

config = series_config[idx]

plt.plot(r_range, WLN_vs_r, f"{config['marker']}-",
color=config['color'], label=f' = {gamma}')

if config['special_sections'] is not None:
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for section in config['special_sections']:
mask = (r_range >= section['start']) & (r_range <= section['end'])
if any(mask):

plt.plot(r_range[mask], np.array(WLN_vs_r)[mask],
f"{section['marker']}-",
color=section['color'])

plt.axhline(0, color='k', linestyle='--', alpha=0.5)
plt.xlabel("Amplitud de compresión ($r$)", fontsize=12)
plt.ylabel("Negatividad Logarítmica de Wigner ($NLW$)", fontsize=12)
plt.title("Evolución de la $NLW$ vs $r$ para diferentes $\gamma$", fontsize=14)
plt.grid(True, alpha=0.3)
plt.legend()
plt.tight_layout()
plt.show()

# 2. Gráfico con r fijo
r_values = [0.6, 0.9, 1.3]
gamma_range = np.linspace(0.1, 1.0, 19)

series_config_2 = {
0: { # r = 0.6

'color': 'purple',
'marker': 'o',
'special_sections': [

{'start': 0.82, 'end': 1.0, 'color': 'lightgray', 'marker': 'o'}
]

},
1: { # r = 0.9

'color': 'orange',
'marker': 'o',
'special_sections': [

{'start': 0.63, 'end': 1.0, 'color': 'lightgray', 'marker': 'o'}
]

},
2: { # r = 1.3

'color': 'brown',
'marker': 'o',
'special_sections': [

{'start': 0.18, 'end': 0.27, 'color': 'lightgray', 'marker': 'o'},
{'start': 0.31, 'end': 1.0, 'color': 'lightgray', 'marker': 'o'}

]
}

}

plt.figure(figsize=(10, 6))

print("\nCalculando WLN vs para diferentes r...")
for idx, r in enumerate(r_values):

WLN_vs_gamma = []
for gamma in tqdm(gamma_range, desc=f'r = {r}'):

wln = calculate_WLN(N, gamma, r, theta, xvec, yvec)
WLN_vs_gamma.append(wln)

config = series_config_2[idx]

plt.plot(gamma_range, WLN_vs_gamma, f"{config['marker']}-",
color=config['color'], label=f'r = {r}')

if config['special_sections'] is not None:
for section in config['special_sections']:

mask = (gamma_range >= section['start']) & (gamma_range <= section['end'])
if any(mask):

plt.plot(gamma_range[mask], np.array(WLN_vs_gamma)[mask],
f"{section['marker']}-",
color=section['color'])

plt.axhline(0, color='k', linestyle='--', alpha=0.5)
plt.xlabel("Cubicidad ($\gamma$)", fontsize=12)
plt.ylabel("Negatividad Logarítmica de Wigner ($NLW$)", fontsize=12)
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plt.title("Evolución de la $NLW$ vs $\gamma$ para diferentes $r$", fontsize=14)
plt.grid(True, alpha=0.3)
plt.legend()
plt.tight_layout()
plt.show()
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