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1 INTRODUCCION

1. Introduccion

Uno de los pilares mas importantes de la fisica moderna es la mecénica cuéntica, la cual,
desde sus inicios ha transformado nuestra comprension de la naturaleza hasta escalas fun-
damentales. Sus principios, como la superposicion y el entrelazamiento de estados, han
trascendido el interés puramente tedrico hacia la practica impulsando el desarrollo de nue-
vas tecnologias en diversos campos de nuestra vida cotidiana, por ejemplo los teléfonos
inteligentes que usamos dia a dia o incluso aquellas que son aplicables en la medicina.
Un campo destacable que busca aprovechar estos fendmenos cudnticos es el de la infor-
macién cudntica, en donde se busca procesar y transmitir informacion de formas que son
inaccesibles para la computacion cldsica. Mientras esta dltima codifica la informacién en
unidades bdsicas (bits) que representan un estado bien definido (0 6 1), la computacién
cuantica, relevante dentro del marco de la informacidn cudantica, busca codificar la infor-
macion en unidades bésicas que pueden existir en una superposicion de ambos estados
simultineamente.

Dentro de la computacién cudntica existen dos paradigmas con gran relevancia: El cémpu-
to cudntico de variable discreta (CCVD), basado en qubits, es quizas el mas conocido, pero
también existe el computo cudntico de variable continua (CCVC), el cual es una variante
de la computacion cudntica que utiliza variables fisicas continuas para la codificacion de
la informacién, por ejemplo: la posicién y el momento de una particula, o los modos de
un campo cudntico.

El objetivo de este trabajo es caracterizar un conjunto especifico de estados cudnticos
denominados estados de fase ctibica, que pertenecen a la clase de estados no Gaussia-
nos. Estos estados resultan de aplicar un operador no lineal, conocido como el operador
de fase cubica, sobre el estado de vacio comprimido. En términos generales, los estados
no Gaussianos son fundamentales para extender las capacidades del procesamiento de
informacién cudntica mas alld de lo que permiten las operaciones Gaussianas, como des-
plazamientos y compresiones. En particular, el operador de fase ctubica introduce una no
linealidad cubica al depender del operador de posicion elevado al cubo. Esta caracteristica
permite explorar nuevas posibilidades en la manipulacién de estados cudnticos y habilita,
en teorfa, una ventaja computacional frente a los métodos clésicos. El interés en los esta-
dos de fase cubica radica en su posible implementacién dentro del marco del CCVC. En
este contexto, los estados no Gaussianos como los de fase cibica pueden complementar
operaciones Gaussianas para lograr universalidad en el computo cudntico.

Para formalizar el valor de estos estados como recursos computacionales, se adopta una
teoria de recursos basada en la funcién de Wigner, una funcién de cuasi-probabilidad que
describe el estado cudntico de un sistema en el espacio fase. Una propiedad distintiva de
los estados no Gaussianos es que su funcién de Wigner puede presentar regiones con va-
lores negativos, lo cual es una manifestacion directa de su no clasicidad. Esta negatividad
de la funcién de Wigner se interpreta como un recurso cudntico util en el CCVC.

Concretamente, los estados de fase cubica exhiben dicha negatividad, lo que los convierte
en candidatos prometedores para el computo cudntico con ventajas reales. Para cuantificar
este recurso, se utiliza la negatividad logaritmica de la funcién de Wigner. El trabajo se

2 PROYECTO TERMINAL I



1.1 Estados de Fock 1 INTRODUCCION

enfoca en determinar la combinacién optima de pardmetros que maximice esta medida de
recurso, mediante simulaciones numéricas. Para ello, se emplean dos métodos de apro-
ximacién del operador de fase cuibica: (a) la expansion en serie de Taylor del operador
de fase cubica, y (b) el algoritmo de Clenshaw, implementado en la biblioteca QuTiP de
Python, la cual permite una simulacién eficiente de ciertos sistemas cudnticos.

1.1. Estados de Fock

Debido a que en el CCVC puede trabajarse con modos de campos electromagnéticos, es
prudente mencionar que una forma comun de describirlos es a partir de los estados de
Fock. Un estado de Fock |n) (también conocido como estado de niimero), es un estado
fisico con una cantidad bien definida (n) de fotones (o, en general, bosones), en el que las
amplitudes de los campos electromagnéticos no estdn bien definidas debido la no conmu-
tacién entre los operadores de creacién (a) y aniquilacién (&) con el operador de nimero
(N = a'a) [[1, 2]. Esto es asf ya que, si bien existe un nimero n de fotones en el sistema,
la aplicacion de alguno de estos dos operadores cambiard esta cantidad sucesivamente con
cada aplicacion.

Los estados de Fock forman una base completa del espacio de Hilbert asociado a un
oscilador arménico cudntico. En el CCVC, el espacio de Fock proporciona una base orto-
normal fundamental ((m|n) = d,,,), ya que en un sentido fisico, la descripcién cuéntica
del campo electromagnético puede representarse mediante la expansion del operador de
densidad en la base de estados de Fock, la cual incluye términos diagonales y no diago-
nales. Debido a la importancia que tienen estos estados en el CCVC, es prudente hacer
mencion de su definicidn y la accidn que tienen los operadores de creacion y aniquilacion
sobre estos estados [1, 2]]:

al = L(A—z“) o= L(AJrz'A) (1.1)
\/ﬁq p? \/ﬁq p *

En donde / es la constante de Planck reducida, la cual, aunque se mostrard explicitamente
en las ecuaciones siguientes, para la seccion de resultados y los cédigos que se utilicen, se
hard h = 1. Ahora, teniendo en cuenta una funcién de onda 1) en el espacio de posicion,
los operadores de posiciéon y momento (g y p, respectivamente) se definen como:

(@) = ), Plg) = —z’hjqw(q) (1.2)

Por otra parte, la accién de los operadores @ y a' sobre |n) es tal que:

a'l0) = vn+1ln+1), aln) =+nln —1). (1.3)
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1.2 Estados y operaciones Gaussianas 1 INTRODUCCION

Por supuesto, los operadores de posicion (§) y momento (p) pueden escribirse en términos
de los de creacion y aniquilacion, a saber:

qz\/f(aua), p=i Z(a*-a). (1.4)

El estado de vacio, |0), resulta de suma importancia, pues los estados de Fock pueden
generarse a partir de este estado base [[1]:

(@)

n!

0). (1.5)

n) =

Esto es relevante en el contexto de CCVC, porque muchos estados (como los estados
Gaussianos) son superposiciones infinitas de estados de Fock.

1.2. [Estados y operaciones Gaussianas

Los estados Gaussianos representan un tipo particular de estado en los sistemas cudnticos,
amenudo considerados como los més “simples” o “clasicos” dentro de su descripcién. Las
operaciones Gaussianas son transformaciones cudnticas que provienen de interacciones
fisicas descritas por Hamiltonianos que son, como méximo, cuadraticos en los operadores
candnicos (como posicién ¢ y momento p, o los operadores de aniquilacién a y creacion
a") [3]. Una caracteristica importante de estas operaciones es que, cuando se aplican a
estados Gaussianos, el resultado sigue siendo un estado Gaussiano [4].

La relevancia clave de esta combinacion de estados y operaciones simples es que se ha
demostrado que si un proceso fisico cudntico utiliza inicamente estados Gaussianos y
operaciones Gaussianas que no afiaden una complejidad cuantica mds profunda, este pro-
ceso puede ser reproducido y simulado eficientemente en una computadora clasica con-
vencional [3} 4, 5 6].

Por lo tanto, para poder llevar a cabo tareas que van més alld de lo que una computadora
clasica puede simular de manera eficiente, se vuelve necesario el uso de estados o trans-
formaciones que no sean de este tipo Gaussiano, es decir, que manifiesten propiedades
cudnticas que rompen con esta “simplicidad” o “clasicidad” particular.

1.3. Estados Gaussianos

Los estados Gaussianos son un tipo de estados cudnticos con una gran relevancia experi-
mental en el marco de la Optica cudntica ya que las operaciones sobre ellos (operaciones
Gaussianas) son matematicamente manejables, es decir, pueden manipularse con cierta
facilidad y experimentalmente accesibles [7]. La caracteristica que define a un estado
Gaussiano es que estd completamente especificado por sus dos primeros momentos es-
tadisticos: medias (primer momento) y la covarianza (segundo momento) [, 16]. Se les
llama “Gaussianos” porque sus funciones de cuasiprobabilidad en el espacio fase, como
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1.3 Estados Gaussianos 1 INTRODUCCION

la funcién de Wigner (W (q, p)), la cual se vera posteriormente, tiene una forma Gaussia-
na. En general, la funcion de onda de los estados Gaussianos puros (que son los que se
tratardn en este trabajo) es [S8l]:

W(x) = e alaw’+2brte) (1.6)

en donde a,b,c € C, ademds Re(a) >0 y c se debe elegir de forma que se asegure la
normalizacién [8]].

1.3.1. Estados Coherentes

Estos estados pueden describirse como un estado en el que el paquete de ondas del estado
fundamental se ha desplazado en el espacio de fases de posiciones y momentos (g, p).
Asi, pueden generarse haciendo uso del operador de desplazamiento D(c) = ¢4 —o"a

aplicandolo sobre el estado de vacio |0) dando como resultado [} 2]:

a) = D(a)[0) = e 3" (1.7)

en donde o € C. Una caracteristica muy importante de los estados coherentes es que
minimizan la relacion de incertidumbre de Heisenberg [[1]. Ademads, poseen la propiedad
de mantener una fase bien definida durante un periodo de tiempo determinado, debido a
que estdn constituidos por una superposicion cudntica de estados con nimero indefinido
de fotones. Esto contrasta con los estados de Fock (o estados de nimero), los cuales
presentan una fase completamente aleatoria [1].

1.3.2. [Estados comprimidos

Los estados comprimidos representan una extension de los estados coherentes, y son fun-
damentales en la descripcion de sistemas cudnticos donde las fluctuaciones en una cua-
dratura, como la posicién o el momento (Ec. [I.4), necesitan minimizarse por debajo de
las que se asocian con los estados coherentes. A diferencia de estos dltimos que, como se
ha visto, mantienen una incertidumbre que es igual en ambas cuadraturas y minimizan la
relacion de incertidumbre de Heisenberg, los estados comprimidos las redistribuyen entre
las cuadraturas de manera que alguna de ellas puede reducirse por debajo del limite de
Heisenberg a costa de aumentar las fluctuaciones en la cuadratura complementaria para
respetar la relacion de incertidumbre [1} 2].

Este tipo de estados, de manera similar a cémo son creados los estados coherentes, tam-
bién se crean mediante la aplicacién de un operador dependiente de algiin operador cané-
nico, particularmente @ y a', solo que en este caso se aplica a un estado coherente (|a)).
Este operador es conocido como operador de compresion y es definido como [[1} 2]:

3(8) = ebtera—ea™) (1.8)
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1.3 Estados Gaussianos 1 INTRODUCCION

En donde & = re? determina el grado de compresién que sufrird el estado al que se
aplique a través de la magnitud r € [0, 00) y en direccion de 6 € [0, 27|, es decir, no es
forzoso que la compresion se dé a lo largo de ¢ o de p, sino que puede darse en cualquier
direccién del espacio fase [111 2]].

A diferencia de ﬁ(oz), que actia creando o destruyendo fotones de manera individual,
S (€) lo hace en pares de fotones correlacionados [1], lo cual puede observarse en el ar-
gumento de la funcién exponencial, que, a diferencia del operador de desplazamiento,
contiene a° y a'2.

Para poder analizar como cambian las cuadraturas y propiedades de los fotones en este
tipo de estados, es necesario observar qué sucede cuando S(&) (y ST(¢) = S71(¢) =
S(—=£)) se aplica sobre los operadores de creacién y aniquilacion:

A

S1(€)as(€) = acoshr — afe? sinhr,

St(€)atS(€) = a' coshr — ae™ sinh 7. (1.9)

El operador de compresién puede aplicarse a un estado general |¢)) el cual se transforma
en un nuevo estado |1,) = S(£)|1)) que mantiene propiedades de |¢) pero con diferencias
en las cuadraturas. Sin embargo, también puede aplicarse directamente sobre el estado
fundamental introduciendo pares de fotones correlacionados distribuidos de manera que
las fluctuaciones difieran en las cuadraturas [1]].

De esta manera, se puede obtener un estado comprimido mds general al aplicar ﬁ(a)
sobre las ecuaciones|I.9]y el estado de vacio, resultando en [1]:

o, &) = D(a))5(£)]0). (1.10)

Asti, si & = 0, se obtiene un estado coherente, o por el contrario, hacer o = 0 y se obtiene
el vacio comprimido.

El operador de compresion también puede expandirse en términos de estados de Fock [1]],
sin embargo, esta expansion tnicamente involucra términos pares debido a que S(&) los
introduce (o aniquila) en pares. Asi, el estado de vacio comprimido se expresa como [1]:

€)= \/coshr Z m! ‘

(tanh r)™|2m) = A, (r, 0)]2m). (1.11)

6 PROYECTO TERMINAL I



1.4 Funcién de Wigner 1 INTRODUCCION

Una forma simple de analizar este tipo de estados surge de notar que el operador S (€)
reescala la funcién de onda de acuerdo con la siguiente ecuacion [9]]:

be(q) = e (eq). (1.12)

Estos estados Gaussianos pueden visualizarse en el espacio fase de posiciones y momen-
tos mediante una distribucion de probabilidad, que particularmente en este estudio se
utilizaré la funcién de Wigner.

1.4. Funcion de Wigner

Se trata de una distribucion de cuasi-probabilidad en el espacio fase, esto quiere decir
que, a diferencia de una distribucién de probabilidad comun, esta puede tomar valores ne-
gativos para estados de naturaleza no clésica y resulta de mucha utilidad para representar
estados cudnticos de una manera similar a como se hace en la mecanica clasica [1]. Ca-
be mencionar que, aunque la funcién de Wigner puede definirse mediante convenciones
ligeramente diferentes, todas ellas son equivalentes. Una de ellas es:

1 1 1 ,
W(q, z/( ) (—)wy/hd. 1.13
(0:p) = 5 [V (a+3y)v(a—3y)e y (1.13)
En esta ecuacién, ¢ y p son las variables de posicién y momento en el espacio fase y
corresponden a los eigenvalores de de los operadores ¢ y p, respectivamente. Por supuesto,
Y(z) corresponde a la funcién de onda del estado en cuestion.

Mediante la obtencién de la funcién de Wigner asociada a algin estado, puede visualizarse
su densidad de probabilidad en el espacio fase. Particularmente se muestran las asociadas
a los estados Gaussianos mencionados en la seccién previa. En la Fig. [I] se muestra la
funcién de Wigner asociada a un estado coherente desplazado hacia la posicion (1, 1) en
el espacio fase, mientras que en la Fig. [2]se visualiza la funcién de Wigner correspondiente
a un estado comprimido centrado en el origen.

7 PROYECTO TERMINAL I



1.4 Funcién de Wigner 1 INTRODUCCION

Funcion W(q, p) para un estado coherente desplazado

Funcion W(q, p) para un estado coherente desplazado

°
g
Wig. p)

Figura 1: Se muestra la funcién de Wigner asociada a un estado coherente desplazado en
las cuadraturas de posicién y momento hacia (¢ = 1, p = 1). Puede notarse en la grifica
en 2 dimensiones que la incertidumbre para la posicion es igual que la del momento,
mientras que en 3 dimensiones se observa que esta funcidn tiene una forma Gaussiana.

6 Funcion W(g, p) para un estado comprimido Funcion W(q, p) para un estado comprimido

0576
0.504

0.432

0360
R e
0288

0216

wig, p)

0.144

0.072

0.000

Figura 2: Se muestra la funcién de Wigner asociada a un estado comprimido centrado
en el origen. Puede notarse en la griafica en 2 dimensiones que la incertidumbre para la
posicion es mayor que la del momento, mientras que en 3 dimensiones se observa que esta
funcidn tiene una forma Gaussiana “alargada” hacia un lado, efecto debido a una mayor
incertidumbre en g que en p.
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1.5 Cémputo Cudntico 1 INTRODUCCION

1.5. Coémputo Cuantico

La computacion cldsica y la computacion cudntica representan enfoques distintos para
el procesamiento de informacién. Mientras que la computacién cldsica opera con bits
binarios (0 6 1), lo que constituye la base de la computacién digital, también pueden
utilizarse variables continuas mediante sistemas analégicos [10].

La computacién cuéntica, por su parte, se distingue por aprovechar fendmenos descritos
por la mecénica cudntica. Uno de los fendmenos fundamentales para este tipo de computo
es la superposicion, esto es: la capacidad de que un sistema cudntico puede existir en una
combinacién de estados simultineamente, a diferencia del bit cldsico que solo puede estar
en un estado discreto (0 6 1).

Esta informacion en estado de superposicion puede codificarse de manera discreta, utili-
zando sistemas con un nimero finito de estados, como los qubits, los cuales pueden estar
en una superposicion lineal de los estados base |0) y |1) [6]. Este tipo de computacidn,
conocido como computo cudntico de variable discreta (CCVD), es el més conocido y es-
tudiado [6], sin embargo, se han encontrado algunas limitantes en su implementacién y
escalamiento para una gran cantidad de qubits, por ejemplo, lograr mantener la coheren-
cia entre ellos por un tiempo prolongado, es decir, mantener los estados de superposicion
y el enredamiento entre ellos [1} [11].

Por otra parte, la informacién en estado de superposicion, también puede codificarse de
manera continua, de manera semejante a la computacion cldsica. La computacién cudn-
tica de variable continua (CCVC) opera sobre sistemas cudnticos descritos por variables
continuas, como la posicion y el momento. En este marco, los estados también pueden
existir en superposicion de estados base continuos [6]]. Los elementos basicos utilizados
en CCVC, que a menudo son modos de un campo cudntico (por ejemplo, modos del cam-
po electromagnético [6, (7, [12], suelen ser referidos como gumodes, en analogia con los
qubits utilizados en la computacién cudntica de vaciable discreta (CCVD) [[13]].

La capacidad de codificar la informacion en estados dotados de superposicion hace que,
en el computo cudntico, se puedan representar multiples valores al mismo tiempo, lo que
permite procesar informacién de manera paralela, es decir, realizar una operacién o eva-
luar una funcién con varias entradas simultdneamente en un solo paso, con lo que poten-
cialmente, se podrian resolver ciertos problemas mucho mds rapido que una computadora
clasica [6]].

1.5.1. Cémputo universal

El cémputo universal es la capacidad de un sistema computacional para simular cualquier
algoritmo mediante un conjunto finito de operaciones bdsicas [6]. Para el cémputo uni-
versal clasico las operaciones basicas que permiten simular cualquier algoritmo son las
operaciones logicas AND, OR y NOT. Su version cuantica amplia este concepto al domi-
nio de las transformaciones unitarias propias de la mecénica cudntica. Es decir, implica la
capacidad de aproximar cualquier transformacién unitaria mediante un conjunto finito de
operaciones cudnticas elementales [6].

9 PROYECTO TERMINAL I



1.5 Cémputo Cudntico 1 INTRODUCCION

En el mundo de las variables continuas, hablar de computacion cudntica universal se vuel-
ve un poco mds delicado que en el caso discreto, esto se debe a que una transformacién
unitaria completamente arbitraria sobre una sola variable continua implicaria usar una
cantidad infinita de pardmetros para poder transformar por completo todo el espacio, lo
cual resulta poco préactico. Es por ello que la idea de universalidad se restringe a ciertas
subclases de transformaciones més manejables. En particular, aquellas que provienen de
Hamiltonianos polinémicos: es decir, Hamiltonianos que se pueden escribir como fun-
ciones polindmicas de los operadores canénicos continuos (por ejemplo, posicion (§) y
momento (p)) [6].

A pesar de que las operaciones Gaussianas permiten manipular los estados cuanticos de
diversas formas, estas por si solas no son suficientes para la computacion cudntica uni-
versal [3, 14, [15]. Esto se debe a que los procesos cuanticos que involucran este tipo de
operaciones y estados Gaussianos pueden ser simulados eficientemente de manera cldsica
[3]], 1o que significa que no proporcionan una ventaja computacional cudntica significativa
sobre las computadoras clasicas.

Por otra parte, se ha mostrado que mediante la combinacién de operaciones lineales (co-
mo desplazamientos o transformaciones gaussianas) con al menos una operacioén por lo
menos ctbica (que contenga, por ejemplo, §* o p*) podria lograrse la computacién cudn-
tica universal en el marco de variables continuas [[14} [15)]. Es aqui donde las teorias de
recursos, particularmente las de no-Gaussianidad y negatividad de la funcion de Wigner,
adquieren relevancia, pues proporcionan un marco formal para identificar y cuantificar las
propiedades cudnticas que son necesarias para lograr la computacién cudntica universal y
poder alcanzar una ventaja cudntica computacional sobre los métodos cldsicos en algunas
tareas especificas [15].
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2 TEORIA DE RECURSOS Y SUS ELEMENTOS

2. Teoria de recursos y sus elementos

Para entender de que trata una teoria de recursos es ttil comprender, en primer lugar, qué
es un recurso. Un recurso es algo que adquiere valor debido a que existen restricciones
que impiden obtenerlo libremente dentro del sistema que se esté considerando, asi por
ejemplo, en la economia, algunos recursos pueden ser el agua, el oro o el petréleo ya
que no pueden producirse de manera arbitraria, sino que el sistema, para este ejemplo, el
planeta, tiene una cantidad limitada de estos. En un contexto computacional, el poder de
computo (CPU, RAM, GPU, etc.) es un recurso limitado ya que algtin software que se
ejecute dentro de una PC no puede utilizar mds memoria o procesamiento que el que es
permitido por el hardware actualmente implementado en la misma, de manera que, si se
busca aumentar el poder de computo, serd forzoso afadir hardware adicional en la placa
madre de la computadora para lograrlo, es decir, agregarlo al sistema [[16].

Dentro de una teorfa de recursos, existen operaciones y estados que son permisibles, de
manera que a estos se les denomina como libres [[1'/]]. Por otro lado, los estados que no son
libres, se denominan como estados de recurso y sus operaciones como prohibidas [17]].

2.1. Teoria de recursos cuanticos

Por supuesto, las teorias de recursos no son exclusivas del mundo clasico, sino que tam-
bién existen en el contexto de la mecdnica cudntica, asi, andlogamente a los ejemplos
econdmico y computacional mencionados, en el mundo cudntico existen propiedades que
no pueden ser creadas libremente bajo ciertas restricciones fisicas 0 matematicas, como
pueden ser el enredamiento, la coherencia o la negatividad de la funciéon de Wigner [18]
(de la cual se hablard con mds detalle posteriormente).

De manera andloga al caso clésico, surge la pregunta de qué es posible hacer con los recur-
sos que brinda la fisica cuantica. Es asi que las teorias de recursos cudnticos (TRC) sirven
para cuantificar un determinado efecto cudntico a partir de definir medidas, desarrollar
protocolos para su deteccion o identificar procesos que permitan optimizar su aprovecha-
miento para una aplicacién dada [18]. Debido a esto, las TRC han propiciado ver estos
efectos con miras a la utilidad y no solo como fenémenos fisicos.

2.2. Operaciones libres

Las operaciones libres son aquellas transformaciones permitidas dentro de una teoria de
recursos que no generan el recurso en cuestion. Es decir, son operaciones que conservan la
cantidad de recurso y, por lo tanto, no permiten obtener un estado con mayor cantidad de
este a partir de uno con menor cantidad. Estas operaciones son consideradas “gratuitas”,
en el sentido de que no requieren gasto del recurso [18].

Las restricciones que definen qué operaciones son libres dependen de la teoria de recursos
especifica que se esté considerando, por lo que pueden variar drasticamente entre distintos
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marcos tedricos. Sin embargo, todas estas comparten una caracteristica fundamental: No
es posible generar recursos a partir de operaciones libres [18].

En el contexto de la mecénica cudntica, las operaciones libres no incluyen todas las trans-
formaciones permitidas por la teoria cudntica, sino que representan un subconjunto res-
tringido. Como consecuencia, no todos los estados cuanticos pueden ser generados a partir
de un estado inicial fijo utilizando solo operaciones libres.

La teoria de recursos de interés para este trabajo es la relacionada con la no gaussianidad
cudntica y negatividad de Wigner, en la cual las operaciones libres se denominan Protoco-
los Gaussianos (PG), de los cuales los Protocolos Gaussianos Deterministas (PGD) son un
subconjunto que preserva la traza [3]], es decir, si se aplica una transformacion unitaria U a
un estado p, se cumple que Tr[UpU'] = Tr[p]. Esto permite que no se pierda informacién
al aplicar U.

2.3. Estados libres

Son los estados accesibles o que se pueden generar exclusivamente mediante operaciones
libres, es decir, sin necesidad de consumir el recurso que se esté considerando, de manera
coloquial, puede decirse que son estados “gratuitos” [18]]. Por ejemplo, en el marco de
la termodindmica clésica, un sistema en equilibrio térmico a temperatura 7' es un estado
libre, ya que puede obtenerse sin necesidad de gastar energia adicional.

Un principio fundamental en cualquier teoria de recursos es que las operaciones libres
preservan los estados libres, asi, si se aplica una operacién de este tipo a un estado libre,
el resultado seguira siendo un estado libre. Esto garantiza que los estados de recurso no
puedan obtenerse a partir de estados libres mediante operaciones permitidas dentro de la
teoria. Asi, cualquier estado que no sea libre, es denominado como un recurso [17,(19].

En el marco de la TRC que se estudiard se pueden definir los estados libres como aquellos
cuya funcién de Wigner es positiva (Ec. [I.13). Es decir, para un conjunto de operadores
de densidad en el espacio de Hilbert  de un nimero arbitrario, pero finito se cumple [

En el marco de la teoria de recursos de la negatividad de la funcion de Wigner, estos son
los estados libres [5]].

2.4. Recursos

La existencia de recursos plantea una cuestion natural acerca de cuanto de ellos hay dispo-
nible dentro del sistema bajo estudio, por lo que, para responderla, este debe ser cuantifi-
cado y con ello surge la necesidad de definir una medida para hacerlo. Existen dos tipos de
medidas relevantes relacionadas a un recurso en una TRC: las medidas mondtonas, que
cuantifican la cantidad existente y los festigos, que identifican la presencia del recurso
mediante observables |5, [14].
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2.4.1. Medidas monoétonas

En una TRC, las medidas monotonas son funciones que cuantifican la cantidad de recur-
so presente en un estado o sistema cudntico. Para que una funcién M sea una medida
monotona valida, debe cumplir con algunos principios caracteristicos como:

1. Orden entre recursos: Si se tienen dos estados diferentes, a y b, cada uno con cier-
ta cantidad de recurso, de los cuales a posee al menos la misma cantidad de recurso
que b, entonces esto significa que es posible transformar a en b mediante operacio-
nes permitidas (operaciones libres). En términos de la medida, esto significa que
si a puede transformarse en b, entonces la medida asignada al recurso a debe ser
mayor o igual a la medida asignada al b [20]]:

M(a) > M(b).

En términos mds intuitivos, esto quiere decir que si un recurso puede ser convertido
en otro, la cantidad de recurso existente en el estado inicial debe ser, al menos, tanta
como la del resultante.

2. Cero para estados libres: Si se denota a ' como el conjunto que contiene a los
estados libres, entonces puede decirse que las medidas mondtonas asignan un valor
nulo a los estados libres p € F', ya que estos no poseen recurso:

M(p)=0, VpeeF,
lo cual indica que si un estado es considerado “gratuito”, hablando en términos del
recurso, entonces no debe contribuir al valor de la medida [5]].

3. No creacion de recursos mediante operaciones libres: Si se tiene una operacion
libre C' que actia sobre un estado de recurso, o ¢ F', esta no debe incrementar el
recurso en dicho estado. Es decir, la medida antes de aplicar la operaciéon debe ser
mayor o igual que la medida final [17]:

M(o) = M (C(0)).

Este principio implica que no se genera recurso adicional al aplicar una operacién
libre sobre algin estado de recurso.

Entropia relativa.
Existe una medida dentro de las teorias de recursos conocida como entropia relativa, con

la que se busca cuantificar la cantidad de recurso en un sistema a partir de la desviacion
de un estado p con respecto a un estado libre o € S [17,[19].
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La entropia relativa de p respecto a o se define formalmente como [[19]:

S(plo) = Trlplog p] — Tr[plogo]. (2.1)

Esta expresion mide la discrepancia entre los estados p y ¢ en términos de la informacién
cudntica y resulta de utilidad para compararlos entre si.

De aqui se desprende que:
= Si p = o, entonces S(p|o) = 0, lo que indica que ambos estados son idénticos.

= Si py o son muy diferentes, S(p|o) toma valores grandes, reflejando una gran
discrepancia entre ellos.

No obstante, esta medida podria no ser suficiente, de modo que es de utilidad calcular la
desviacion entre un estado p y un conjunto de estados libres .9, lo cual se logra a través de
la distancia de entropia relativa, definida como:

E,(p) = fuf S(plo). (2.2)

oeSs

Aqui, inf quiere decir “infimo”, es decir, el valor minimo posible de S(p|c) cuando o
varia dentro del conjunto de estados S. Esta medida cuantifica que tan diferente es p del
conjunto de estados libres S a través de encontrar el estado o € S mds cercano a p en
términos de la entropia relativa. De esta manera, si p € S, entonces E,.(p) = 0, pero si
resulta que p ¢ S, entonces E,(p) > 0. Cabe mencionar que la entropia relativa de un
recurso es una medida mondtona [18]].

Para conocer la posibilidad de transformar n copias de un estado p en m copias de otro,
por ejemplo o, lo cual es una tarea fundamental en las Teorias de Recursos Cuanticos
(TRC) y cuya tasa de conversion 6ptima se cuantifica en el limite asintético de muchas
copias, se introduce y estudia el comportamiento de la entropia relativa regularizada. Esta
medida se define precisamente considerando un gran nimero de copias del estado

Para conocer la posibilidad de transformar n copias de un estado p en m copias de otro,
por ejemplo o, se estudia el comportamiento de la distancia de entropia relativa para una
cantidad muy grande de copias de dicho estado. El motivo de utilizar una gran cantidad
de copias es por que, de esta manera, las tasas de conversion Optimas se vuelven claras y
estables en el limite asintético (n — o), algo que no siempre ocurre al considerar pocas
copias. La medida que cuantifica este recurso en dicho limite asintético, y que rige las
tasas de conversion es la entropia relativa regularizada, definida como la entropia relativa
por copia en el limite de un nimero infinito de copias [18,19]:

B, (p®m
E=(p) = lim 27

n—o0 n

(2.3)

Notar que aqui se ha definido p®" como las n copias del estado p, asi que no debe con-
fundirse con un exponente.
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La finalidad de buscar transformar un estado en otro es para observar si resulta ser mds
facil de manipular. La tasa de conversion asintdtica entre p 'y o, dada como:

EX(p)
(o)’

R(p — o) = (2.4)

define el nimero de copias de o que pueden producirse por cada copia de p en el caso en
que se tienen una gran cantidad de copias [[17]].

En la teoria cudntica, distinguir que tan diferentes son dos estados es clave para com-
prender la informacion que transportan. Cuando el objetivo es medir qué tanto un estado
cudntico se aparta del conjunto de estados “libres” o cldsicos, la entropia relativa se vuelve
una herramienta muy til. A través de su forma regularizada, esta medida revela cudnta
que tan util es un sistema en comparacioén con otro y qué tan eficiente puede ser su con-
version en otros recursos. En el limite de muchas copias, estas herramientas nos dicen qué
transformaciones cudnticas son posibles, qué tan costosas son y qué tanto se gana.

2.4.2. Testigos

Los testigos son funciones que estdn disefladas para detectar la presencia de un recurso
especifico en un estado cuédntico debido a que un testigo es un observable [[17]. Es por esto
que los testigos son ttiles en el sentido experimental ya que si se preparan multiples copias
de un sistema cudntico en el mismo estado desconocido, un recurso puede detectarse
siempre que un testigo produzca un valor esperado negativo [[17]]. Las caracteristicas de
los testigos son:

1. No negatividad en estados libres: Estos testigos estan disefiados de forma que su
valor esperado sea positivo para todos los estados pertenecientes al conjunto que
se denomind como S, es decir, los estados libres [17]. Si se denota como W a esta
observable, esto puede expresarse como:

Vpe F = Tr[Wp] > 0. (2.5)

2. Sensibilidad a los recursos: Como se ha mencionado, estas observables son sensi-
bles a los recursos, es decir, su medicion resulta negativa para un estado que contie-
ne el recurso bajo estudio, [17], esto es:

do ¢ F: Tr[Wo] <O0. (2.6)
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3. Computo cuintico de variable continua

Como ya se hizo una breve mencion acerca del CCVC, este se basa en sistemas de varia-
bles continuas, como los modos del campo electromagnético o la posicién y momento de
una particula cudntica.

En comparacién con el CCVD, donde se manipulan qubits mediante aplicarles puertas 16-
gicas cuanticas especificas, en el CCVC, las manipulaciones a menudo involucran trans-
formaciones de las variables continuas, por ejemplo, comprimir el rango de posibles va-
lores de la intensidad de la luz o desplazar la posicion promedio de una particula [6]. Una
ventaja de este tipo de computacion cudntica radica en que es potencialmente escalable y
resistente al ruido [12,21], no obstante, esta ain no ha alcanzado la universalidad. Es aqui
en donde entra en juego la necesidad de una teoria de recursos que permita hacer computo
universal mediante CCVC.

3.1. Teorema de Gottesman-Knill

El teorema de Gottesman-Knill (GK) es un resultado clave en la teoria de la informacion
cudntica para sistemas de variables discretas. Establece que cualquier algoritmo cudntico
que comience en la base computacional (es decir, estados que representan las configura-
ciones bdsicas de los qubits, como |0) y |1)) y utilice solo una clase restringida de com-
puertas (como Hadamard, fase, CNOT y las compuertas de Pauli), junto con mediciones
proyectivas en la misma base computacional, puede ser simulado eficientemente en una
computadora cldsica. Este teorema muestra que una gran clase de algoritmos cudnticos no
proporciona una ventaja de velocidad sobre los procedimientos clésicos [4, [14].

También existe una extension del teorema GK para variables continuas [4} [6]. Este es-
tablece condiciones para que un proceso de informacién cudntica de variable continua
pueda ser simulado eficientemente utilizando una computadora clasica. Estas condiciones
generalmente implican lo siguiente, [4, [14]]:

= Comenzar con estados Gaussianos no entrelazados: El proceso debe iniciarse con
estados Gaussianos, que pueden ser productos de estados de vacio desplazados y
comprimidos.

= Realizar solo transformaciones generadas por Hamiltonianos que son cuadraticos
en los operadores candénicos (posicién 0 momento), como:

* Desplazamientos en el espacio fase: Generados por polinomios lineales en ¢
0 p. Son analogos a las compuertas de Pauli, usadas en el CCVD. Estas son
(4] 14]:

A A

X(q) =e M9 Z(p)=e¥MPi cong,peR. (3.1)
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Estos obedecen la relacién X (q)Z(p) = e~ /"% Z(p) X (¢). Y su accién sobre
la base de posiciones es:

X)) =la+d), Zp)lg) = ¥Pr|g). (3.2)

* Compresion en un oscilador: Este tipo de operaciones se encuentran definidas

por el operador de compresién, dado por la Ec. [I.8] a saber este operador es:
5(¢) = exteratei),

* Compuerta SUM: Es el andlogo, en variable continua, a la compuerta CNOT
de variable discreta, pues sirve como la compuerta de interaccion bédsica para
dos sistemas de osciladores o sistemas de variables continuas [4, [14]. Son
componentes que permiten la simulacion clésica eficiente. Formalmente, se
define para dos sistemas ¢ y j como [4} [14]:

SUM;; = e~ #/Mai®p; (3.3)

La accién de la compuerta SUM;; sobre las compuertas de Pauli es:

Xi(q) @ I; = Xi(q) ® X;(q) (3.4)
Zip) o I; = Zp) @ (3.5)
L@ X;(q) = I; @ X;(q) (3.6)

[ @ Zi(p) — Zi(p) ™' @ Zi(p) (3.7)

= Mediciones en la base de eigenestados de posicién o momento, como la deteccion
homodina, la cual mide una de las dos cuatraturas (posicion o momento) de un
modo bosonico [3, [14]].

= Operaciones del grupo de Clifford, las cuales preservan la Gaussianidad de los es-
tados, por ejemplo:

* Compuerta de fase: Es una operaciéon generada por un Hamiltoniano cuadrati-
co (proporcional a ¢% o p?). Es considerada como una operacién de compresion
para variable continua, la cual introduce una fase dependiente del cuadrado de
la posicion o el momento [4) [14]].

1
P(y) = eap (- Az) . 3.8
(n) = exp (%nq (3.8)
Su accién sobre los operadores de Pauli es:
e X (q)Z(ng), (39)

(») = Z(p). (3.10)
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* Transformada de Fourier: Andloga a la compuerta de Hadamard, en el caso de
los qubits, y es definida como [4, [14]:

F=ean (@ +9). (3.11)

Su accién sobre los operadores de Pauli es:

X(q) = Z(q), 3.12)
Z(p) = X(p)™" (3.13)

Procesos como la teleportacion cudntica de variable continua, la criptografia cuantica y
la correccion de errores, basadas en variable continua, pueden satisfacer estas condicio-
nes y, por lo tanto, pueden ser simulados eficientemente de forma cldsica. Aunque estos
procesos son fundamentalmente cudnticos e involucran enredamiento, no proporcionan
una aceleracion sobre una simulacion clasica bajo las restricciones del teorema extendido
[14].

En resumen, el teorema GK y su extension a variables continuas son herramientas crucia-
les para comprender la frontera entre lo que puede ser simulado eficientemente por una
computadora clasica y lo que requiere recursos cudnticos para una simulacion eficiente.

Para lograr la universalidad en la computacion cudntica con variables continuas, es nece-
sario combinar operaciones Gaussianas con algin elemento no-Gaussiano, el cual puede
ser una operacion unitaria no-Gaussiana (es decir, operaciones generadas por Hamilto-
nianos con polinomios de orden cubico o superior en los operadores candnicos, como los
estados de fase cubica), que no preservan el grupo de Pauli [3, 4, 15, 22], también podria
ser un estado no-Gaussiano [[15, 23] o una medicién del mismo tipo [3,[135] . y estdn fuera
del grupo de Clifford. Como mencién breve, el grupo de Pauli (o también conocido como
el grupo de Heisenberg-Weyl) para variables continuas en n sistemas de osciladores aco-
plados estd conformado por los operadores de desplazamiento en el espacio fase (Ec.[3.1)
para los n osciladores [4, |6].

3.2. Estados de fase cibica |v, )

Como es bien sabido, un estado fisico valido dentro de la teoria cuantica debe ser nor-
malizable, ya que esta propiedad garantiza que las predicciones tedricas puedan ser com-
paradas consistentemente con los resultados experimentales [[14]. Esta exigencia cobra
relevancia al considerar ciertas construcciones tedricas que, si bien son ttiles conceptual-
mente, no siempre corresponden a estados fisicamente realizables.

Un ejemplo representativo es el llamado estado de fase cubica ideal, el cual surge al aplicar
un operador de fase cibica, como e’ (una operacion no-Gaussiana), al estado de vacio
|0). Este estado se define como |y) = ¢"9°|0), donde § es el operador de posicién y
|0),, es el estado de momento igual a cero [3] 15, 23]. Sin embargo, este dltimo no es
normalizable [3} [15 23], ya que se trata de un eigenestado impropio [23] y se encuentra
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fuera del espacio de Hilbert [3]]. Por esta razon,
valido.

~) no puede considerarse un estado fisico

El estado de fase cibica que resulta ttil como recurso en computacion cudntica debe ser
fisicamente generable. Para ello, se recurre a una version “imperfecta” del estado ideal,
la cual se obtiene al aplicar la compuerta de fase ciibica, 6”43, sobre un estado de vacio
comprimido [15} 23]]:

) =T(1)5(£)[0), (3.14)

tal que:
~ 3

F(’y) — ei’yd , S\’(f) — e%(f*&zfﬁlw)’ (315)

en donde g es el operador de posicion.

Invocando la expresion del operador de compresion actuando sobre el estado de vacio
(estado de vacio comprimido) en términos de estados de Fock (Ec. [I.T1):

_ 1 - m (2m)' imé m _
&) = —coshrmzz:o(_l) oy (tanh r)™|2m) = A, (r, 0)]2m). (3.16)

En la que, en la dltima igualdad, se ha hecho:

1 0 v/ (2m)!
A _ 2 : 1™ imb hr)™
m(r,6) coshrmzo( ) 2mm)! ¢ (tanh )

Se busca realizar una comparacién con los resultados mostrados en [23], por lo que se
hari la eleccién de tomar § = 7, y como & = re', entonces se tendrd que £ = —r, y con
ello A,,(r,0) — A, (r, 7).

El paso siguiente para calcular el estado |7, r) es aplicar el operador de fase ctibica f(v)
al estado de vacio comprimido (Ec. [I.TT)), sin embargo, la naturaleza de este operador
involucra no linealidad, de manera que realizar una expansion en serie del mismo seria
prudente para poder continuar con mayor facilidad:

P = (3.17)
2 3 4
PN 7 .6 AN RAPSY
=1 L Ay —
+ vz 291: 261' +24x +
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Al calcular la accién consecutiva del operador Z de la expansion en serie del operador de
fase cibica I'(y) se obtiene que:

B Am(r,0)12m) = cAp(r,0) (V2m[2m — 1) + V2m + 1]2m + 1)),

-
— /3

en donde:

asi, al volver a aplicar z:

#2A,12m) = A, (\/Qm\/Qm —112m — 2) +v2m + 1v2m + 12m)

+V2mV2m|2m) + V2m + 1v2m + 2|2m + 2>>

= C2Am<\/(2m)(2m —1)]2m —2) + (2m + 1 + 2m)[2m)

+/(2m +1)(2m + 2)[2m + 2>>

= C2Am<\/(2m)(2m —1)|2m — 2) 4+ (4m + 1)|2m)

+/2m +1)(2m + 2)]2m + 2>>. (3.18)

Por lo que, aplicando £ una vez mds, se obtiene:

P2 A2m) = P A, (y/(Qm)(Qm —1)v2m — 2|2m — 3)
+ (4m+ 1)V2m[2m — 1) +/(2m + 1)(2m + 2)v2m + 22m + 1)

+/(2m)(2m — 1)v2m — 1|2m — 1)

+ (4m + D)V2m + 12m + 1) +/(2m + 1)(2m + 2)v/2m + 3|2m + 3>>
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=c3A,

V@m)(2m — 1)(2m — 2)|2m — 3) + ((4777, +1)v2m

+ (2m — 1)%>|2m— 1) + ((2m+2) 2m + 1

+ (4m + 1)v2m +‘1> 2m + 1) + \/(2m + 1)(2m + 2)(2m + 3)[2m + 3)

=c*A, <\/(2m)(2m —1)(2m — 2)|2m — 3) + 6m\/2m|2m — 1)

+ (6m +3) V2m + 12m + 1)+ \/(2m + 1)(2m + 2)(2m + 3)|2m + 3>>. (3.19)

Como puede notarse de la expansion de f‘(v) (Ec. , los operadores que actuardn sobre
el estado | — r) son las potencias 3j-ésimas de Z. Por lo que, realizar la accién de cada
uno de ellos conllevaria un gran trabajo algebraico para valores grandes de j. Para realizar
esta tarea seria mds practico hacerlo mediante un c6digo computacional.

Una vez que se ha obtenido la expansién del operador f‘(v), se aplica sobre el estado
|€), de manera que se logra llegar a una aproximacién del estado |, 7). Los resultados
obtenidos se mostrardn posteriormente.
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4. Negatividad de la funcion de Wigner

La teoria de recursos basada en la negatividad de la funcién de Wigner tiene como obje-
tivo identificar y cuantificar las propiedades cudnticas que permiten ventajas en tareas de
procesamiento de informacion cudntica [J5].

En esta teoria, los estados libres son aquellos cuya funcién de Wigner es completamente
positiva en todo el espacio de fase (ver seccion [2.3]). Este conjunto de estados, denotado
como W,, incluye tanto a los estados Gaussianos puros (aquellos estados [¢)) que pue-
den describirse mediante un operador de densidad de la forma p = [¢)(%)|) como a los
mixtos (cuyo operador de densidad se escribe como una suma ponderada de estados |1;),
es decir: p = X, pi|t)(¥;]) [1]. De hecho, Hudson [8] muestra que los estados puros
cuya funcién de Wigner es positiva son los estados Gaussianos [S]]. Sin embargo, también
existen ciertos estados mixtos con funciéon de Wigner positiva que no pueden escribirse
como combinaciones de estados Gaussianos [3]]. No obstante, este trabajo se centra en los
estados puros.

Las operaciones libres en esta teoria estin compuestas por transformaciones cuadréticas
(como las transformaciones generadas por Hamiltonianos de segundo orden) y por me-
diciones Gaussianas imprecisas, conocidas como mediciones coarse-grained [5]. Estas
ultimas son operaciones consideradas dentro de los protocolos operacionales Gaussianos,
relevantes también en la teorfa de recursos de la no-Gaussianidad, y se caracterizan por lo
siguiente:

= Primero, se realiza una mediciéon Gaussiana (como una medicion de la posicion o
el momento).

= [uego, se aplica una operacion condicional que depende del resultado de esa medi-
cion.

= En la préctica, los dispositivos de medicion tienen resolucion finita, por lo que los
resultados no se obtienen como valores exactos, sino agrupados en intervalos. Por
ejemplo, en vez de obtener el valor exacto 1.2345 . . ., se dice que el valor cae en un
rango como [1.2, 1.3]. Esta agrupacién implica una imprecisién que puede llevar a
la obtencién de un estado mixto como resultado de la medicion.

Por otra parte, en esta teoria, los estados de recurso son aquellos estados o ¢ W, es
decir, aquellos cuya funcién de Wigner no es completamente positiva. Ademds de esto, la
negatividad logaritmica de la funcién de Wigner (NLW) es la medida monétona dentro de
esta TRC [5]].

Sobre la existencia de los testigos, en la pagina 34 de la Ref.[3], seccion E. Witness-based
measures, se menciona que: "Para la teoria de recursos de la no Gaussianidad con los
estados Gaussianos o los estados con funcion de Wigner no negativa como estados libres,
entonces el teorema del hiperplano separador asegura que cada estado de recurso posee
al menos un testigo”.
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4.1 NLW como medida del recurso

4.1. NLW como medida del recurso

La negatividad de la funcién de Wigner es considerada un recurso cudntico debido a su
profunda conexién con la no-clasicidad de los estados cudnticos. Los estados con fun-
ciéon de Wigner negativa son, esenciales para obtener una ventaja computacional sobre
los algoritmos cldsicos en ciertas tareas [5]. Esto se debe a que las tareas que involucran
unicamente estados con funciéon de Wigner completamente positiva y operaciones que no
pueden crear negatividad, pueden ser simulados eficientemente de manera clasica [[15].

Para cuantificar la cantidad de negatividad, y por ende de recurso, presente en un estado,
se recurre a la negatividad logaritmica de la funcién de Wigner (NLW) ya que cumple con
las propiedades de una medida mondtona [S)], y para un estado p se define como:

NLW(p) = log ( [ W (q.p)ldadp) @

en donde la integral se realiza sobre todo el espacio, mientras que, aunque la base del
logaritmo es irrelevante para la definicion y no afecta en sus propiedades, se ha utilizado
el logaritmo en base 2, lo cual coincide con [3].

La NLW se considera computable en el sentido de que su valor puede evaluarse mediante
integracién numeérica, no obstante, obtener expresiones analiticas puede ser dificil debido
a la necesidad de integrar el valor absoluto de la funcién de Wigner, W(q, p), lo que
requiere encontrar sus ceros [3l].

Cabe mencionar que, debido a la normalizacion que debe usarse para que un estado cudn-
tico p sea valido y tenga un sentido probabilistico, la integral de W (g, p) debe ser igual a
la unidad, es decir:

/W(q,p)dqdp =Trlp] =1

Para el caso en el que p sea un estado clésico, por ejemplo algtin estado coherente, com-
primido o térmico, su funcidén de Wigner serd Gaussiana y completamente positiva, cum-
pliendo con que la integral en la Ec. (4.1)) serd igual a 1, y con ello haciendo que NLW = 0.

Por otra parte, si el estado en cuestion resulta ser no cldsico, como los estados de Fock,
los del tipo de gato de Schrodinger o, como los considerados en este trabajo, estados de
fase cubica, su funcién de Wigner podria tomar valores negativos, lo cual reflejaria inter-
ferencia cudntica y, en general, su naturaleza no clasica [24]. En este caso, se obtendria
que [ |W(q,p)|dgdp > 1,y consecuentemente, NLW = 0.
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5. Resultados

Con base en la teoria explicada en las secciones previas, se han realizado c6digos, escritos
en Python, para obtener, de manera numérica, los valores de la negatividad logaritmica de
la funcién de Wigner (NLW) para algunos estados de fase cibica, |7, r). La eleccion de los
valores de 7 y r no ha sido de manera arbitraria, sino que se busca replicar los resultados
mostrados en [23]], ademds de dar una aproximacion del estado que maximiza la NLW.

Como primer paso, se realiza una comparacion gréfica de la funcién de Wigner en el
espacio fase del mismo estado a través de dos c6digos: El primero (Sec. [A.I) sirve para
poder visualizar la accién aproximada del operador de fase cubica, f(v), sobre el estado
de vacio comprimido (Ec.[I.T1)) como una expansién en serie, tal como se menciona en
la seccién utilizando los valores (7 = 0.1, = 0.6) para los pardmetros del estado.
Nota: Este cddigo realiza la Fig. 4| particularmente, la correspondiente al inciso (b) se
calcula mediante la "segunda mitad del c6digo”, la cual se indica con el comentario:
dentro del mismo.

Debido a que en los términos de la serie, (WJL,)BJ, para valores “pequefios” de j, el nume-
rador domina sobre el denominador (para este caso en particular, j < 15), entonces se
requieren valores de j suficientemente grandes para que el denominador sea quien domi-
ne. Este comportamiento puede visualizarse en la Fig.[3] en la que se observa que, a partir
de 7 = 15, es el denominador quien domina. De aqui se desprende que una eleccién de
J = 150 serd mas que suficiente. La funcion de Wigner asociada al estado de fase cubica

aproximado por este método puede observarse en la Fig. {b).

Por otra parte, el segundo c6digo se ha implementado usando la funcién wigner (), incluida
en la libreria QuTiP, la cual puede calcular numéricamente la funcién de Wigner a tra-
vés de 4 métodos distintos, basados en los estados de Fock, los cuales pueden indicarse
mediante el valor del pardmetro method de esta funcién [235]], estos son:

m wigner (method='iterative'): Un método iterativo que calcula W (q, p) para cada en-
trada de la matriz de densidad que se le ingrese como pardmetro.

® yigner (method='laguerre’): Hace una aproximacién por medio de los polinomios de
Laguerre.

® wigner (method='clenshaw'): L@ aproximacion se hace a través del método de Clenshaw.
Este método se utiliza por defecto si no se especifica el pardmetro methoa [23].

® wigner (method='fft'): Se utiliza la transformada répida de Fourier.

El método que se utilizard en este trabajo es el mérodo de Clenshaw, implementado por
defecto por QuTiP, el cual evalia series de funciones que satisfacen relaciones de recu-
rrencia (como los polinomios de Laguerre o Hermite). Una relacion de recurrencia permite
calcular el siguiente término de una secuencia a partir de términos anteriores [26].
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Figura 3: Se muestra el comportamiento del j-€simo término de la expansién en serie del
operador I'(vy). A partir del término j = 15, el denominador comienza a dominar sobre el
numerador.

Particularmente, este método es implementado por Qu7iP para calcular la funcién de
Wigner como [25]:

(22)"
W ) ) 5.1

donde los coeficientes c;, dependen de la matriz de densidad y polinomios de Laguerre
generalizados. La implementacion en Qu7iP evalua esta suma mediante una recurrencia
iterativa hacia atrds mediante un ciclo wniie. Las ventajas de este método incluyen: estabi-
lidad numérica ya que el método de Clenshaw es generalmente estable para la evaluacién
de la suma (en este caso, la suma sobre L), es decir, es bastante insensible a los errores de
redondeo [27]], lo cual minimiza la acumulacién de estos errores. También tiene la virtud
de ser eficiente computacionalmente al hacer uso de la recursividad [26], ademéas de una
alta precision que se obtiene con relativamente pocos valores [25,26]. Mediante el uso de
este método implementado en QuTiP, para los mismos valores de los pardmetros (+y, ) se
tiene un resultado similar al obtenido a través del primer cédigo. Este puede visualizarse

en la Fig. [](a).

Para estos valores especificos de (v, ), las funciones de Wigner obtenidas son bastante
similares, sin embargo, esto no dicta con certeza que la aproximacién de I'(y) por medio
de una expansion en serie sea adecuada computacionalmente.
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Célculo directo con QuTIP Aproximacion por expansion en serie
(a) y=0.1,r=0.6 (b) y=0.1,r=06

Max: 0.2658 Max: 0.2661
Min: -0.0774 Min: -0.0771

. | — o | —
=5 T =5
—4 -2 [ 2 4 -4 -2 0 2 4
q q
-yn 0.2 0.1 0 01 02 un

wig. p)

Figura 4: Comparacién de la funcién de Wigner para el estado |y, r) con (y = 0.1, =
0.6) a través de: (a) usar la libreria QuTiP y (b) la aproximacién en serie del operador
I'(7). El tamafio del espacio de Fock usado es N = 35.

5.1. Limitaciones numéricas de la expansion de ()

Para este punto es necesario mencionar las limitaciones observadas. Si se deseara con-
tinuar con el método de la aproximacién del operador f(v) por medio de una serie de
Taylor, se encuentra una limitante computacional conforme el valor de ~y incrementa. En
la Fig. [ se ha utilizado un espacio de Hilbert de N = 35 dimensiones, y los pardmetros
(v = 0.1, = 0.6), mientras que el orden de la expansién se ha tomado con base en
el resultado que se muestra en la Fig. 3| lo cual genera elementos del orden de 2%, es
decir 5 = 150. Esto con el fin de obtener una buena aproximacion ademas de que, con-
siderando la ecuacién [I.T1] se ha hecho m = 5 (este valor se ha elegido debido a que
en realidad no hay una gran diferencia entre tomar m = 5 o cualquier otro valor mayor,
por ejemplo m = 15, sin embargo, este dltimo requiere un espacio de Fock mayor, ya
que, en este caso, se requieren 2m + 1 = N dimensiones debido a que se requiere por lo
menos una dimension en el espacio de Hilbert para poder ejecutar el cédigo, por lo tanto
sim =0 — N = 1). Cabe decir que, a menos que se especifiquen otros valores para los
parametros mencionados, por ahora se tomaran estos como fijos.

Ahora, si se incrementa el valor de -, el resultado es cada vez menos semejante a lo que se
esperaria. Un ejemplo de esto se ve claramente al intentar aproximar la funcién de Wigner
para otros valores de parametros, por ejemplo: (7 = 0.4, = 0.8) (el resto de pardmetros
se han mantenido fijos). Con estos valores, se esperaria un resultado similar al de la Fig.
a), el cual coincide, visualmente, con lo reportado en [23] pero lo que se obtiene se
puede observar en la Fig. [5[b).

Este resultado ha incitado a preguntarse: ;acaso debe considerarse una mayor cantidad
de dimensiones del espacio de Hilbert para lograr una mejor aproximacion? Esta pre-
gunta ha sugerido revisar los resultados que se obtendrian para distintas cantidades de
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Calculo directo con QuTiP Aproximacion por expansion en serie
(a) y=04,r=08 (b) Y=04,r=08

Max: 0.2093 Max: 0.209
Min: -0.1289 Min: -0.1246
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Figura 5: Comparacién de la funcién de Wigner para el estado |y, r) con (y = 0.4,r =
0.8) a través de: (a) usar la libreria QuTiP y (b) la aproximacién en serie del operador
I'(7). El espacio de Fock usado es N = 35.

dimensiones, V. Se ha encontrado que para N > 17, los valores divergen (Fig. [6). En
este conjunto de graficas puede verse que, si se toma N = 35 (como se ha hecho para las
graficas de la Fig. ), este método da una muy mala aproximacién, de modo que para las
graficas de la Fig. [5se ha tenido que usar N = 15, y atin con esto, el resultado no es para
nada cercano a lo esperado con ninguno de los dos métodos (expansion en serie de f‘(v)
o utilizando QuTiP).

Esta mala aproximacién se debe a un desbordamiento en el cdlculo ya que el término
#37 actda en un espacio de Fock de dimensién finita (N), y su norma ||2%7]| escala como
O(N3/2), Para valores de v > 0.2 y N = 15, escala mas rdpidamente que paray = 0.1,
de modo que, en algiin momento, se produce el desbordamiento para cierto valor de 7, (el
cual sucede de manera mds rdpida conforme N sea mayor) antes de que el denominador
comience a dominar sobre el numerador y se logre la convergencia. Es decir, para valores
cada vez mayores de -y, se requieren valores cada vez més grandes de j para lograr la
convergencia, sin embargo estos valores grandes de j causan el desbordamiento.
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N=11 M=12 N=13 N=14 MN=15% N=16&
S — e ~—— e ——
N=17 N=18 N=19 N=20 N=21 N=22
e =
N=23 M=24 MN=25 N=26 MN=27 MN=28

Figura 6: Funcion de Wigner para la aproximacién del estado |y, r) con (7 = 0.4, 7 = 0.8)
por medio de una serie. Se usan dimensiones diferentes del espacio de Fock (V).

Calculo directo con QuTiP

Aproximacién por expansién en serie
(a) y=0.4,r=08

(b) y=04,r=08

254
Max: 0.182 Max: nan
Min: -0.1098 Min: nan

Wia. p)

Figura 7: Comparacién de la funcién de Wigner para el estado |y, r) con (y = 0.4,r =
0.8) a través de: (a) usar la libreria QuTiP y (b) la aproximacion en serie del operador

['(vy) (se muestra en blanco debido a que, para este espacio de Fock, N = 400, ya se ha
llegado al desbordamiento numérico).
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(c) y=01,r=06

Max: 0.2747
Min: -0.0665

y=01r=12

Max: 0.2216
Min: -0.1076

Max: 0.2108
Min: -0.1119

Figura 8: Funciones de Wigner bajo el efecto de incrementar 7, para un mismo valor de
~ en el estado |7y, r). Cada renglén inicia con el estado de vacio y, a la derecha, se sigue
mantener se mantiene fijo un mismo valor de v mientras, para cada uno, se incrementa r.

En vista de estas limitaciones, el uso de las funciones predefinidas que estan incluidas en
la libreria QuTiP, simplifica bastante el c6digo necesario para la obtencion de las funcio-
nes de Wigner para |, r) con distintos pardmetros, de manera que se trabajard con esta
libreria, y aprovechando su estabilidad, ahora los estados se aproximaran con un espacio
mucho més grande, de N = 400 dimensiones, para mejorar la precision. Como ya se
menciond antes, se continuard con el método de Clenshaw (implementado en QuTiP) para
calcular las funciones de Wigner ya que para excitaciones grandes (> 50) éste método es
rapido y numéricamente estable [25]]. Las graficas de la Fig.[/|se han hecho considerando
N = 400. Particularmente la Fig. [7(b) muestra lo que podria extrapolarse a partir de la
Fig. [} Para un espacio de Hilbert de este tamafio, el método de la aproximacién en serie
de I'() ha provocado un desbordamiento numérico.

En las figuras[8]y [9] se muestran un conjunto de funciones de Wigner para distintos valores
de (v, r) de tal modo que sirvan para obtener una idea del efecto que tiene variar alguno
de estos pardmetros mientras el otro se mantiene fijo.
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(a) (y=0,r=0) (b) y=0.1,r=0.1 (c) y=0.6,r=0.1 (d)

y=12,r=01

Max: 0.2286
Min: -0.1087

Max: 0.1902 25
Min: -0.111

Max: 0.1541
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Figura 9: Funciones de Wigner bajo el efecto de incrementar -y, para un mismo valor de
r en el estado |, r). Cada rengl6n inicia con el estado de vacio y, a la derecha, se sigue
mantener fijo un mismo valor de r mientras, para cada uno, se incrementa -y.
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De manera cualitativa, puede notarse en la Fig.|8|que, para algin valor fijo de 7, incremen-
tar r “expande” horizontalmente la cuasi-distribucion, lo cual es esperado debido a que es
una compresion. Mientras que, de la Fig. [0 puede verse que el efecto de incrementar +,
manteniendo una 7 fija, es que aparecen patrones de “media luna” para valores tanto posi-
tivos (zonas rojas) como negativos (zonas azules). Estos patrones incrementan conforme
la cubicidad (vy) crece. De hecho, se observa que si la cubicidad es no nula, comienzan a
aparecer los valores negativos para la funcién de Wigner. Ademads, es notable que, una vez
que existe cubicidad, la negatividad de la funcién aumenta si se incrementa cualquiera de
los dos pardmetros, aunque lo hace en mayor medida si la cubicidad es el pardimetro que
se incrementa.

Es prudente mencionar que el “ruido” en la funcién de Wigner obtenida para los valores
v = r = 1.2 (Fig. (1)) puede reducirse incrementando la dimensionalidad del espacio
de Hilbert utilizado. No obstante, atin utilizando un espacio N = 2000 el ruido persiste
y para valores todavia mayores, por ejemplo N = 4000, ya se tiene un desbordamiento
numeérico para el método que se esta usando en este trabajo, ademds de requerir un lapso
mucho mayor para la ejecucion del cddigo. En vista de esto, se continuara trabajando con
el espacio de N = 400.

5.2. NLW para algunos estados

Ya se ha observado, de manera cualitativa, que incrementar alguno de los dos pardmetros
de los estados de fase cibica incrementa las regiones negativas de la funcién W(q, p),
entonces, una vez obtenida esta funcion, se procede a calcular su negatividad logaritmica
(NLW), la cual, como se menciond en la seccién .1} es adecuado calcularla de manera
numérica. Asi, también se ha escrito un cédigo en Python que realiza la tarea (Sec. |A.2),
ademds de calcular |I¥ (g, p)|, el cual, en caso de existir negatividad en algiin estado, de-
bera ser superior a la unidad, indicando la presencia del recurso en dicho estado. También
se calcula la integral de la funcion de Wigner, la cual debera ser W (g, p) ~ 1, para todos
los casos, debido a la naturaleza de la normalizacion.

En la Tabla|l| se muestran estos resultados para algunos estados elegidos de manera arbi-
traria pero que contienen a los mencionados en la Ref.[23]]. Si se observa, es notorio lo
que se manifest6 algunos parrafos antes acerca de que «y tiene mayor influencia sobre la
NLW que r, particularmente, NLW ; g6 ~ 0.3779 < NLW( 41 ~ 0.4947.
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v | 7 | NLW,, | [|W,.(q,p)|dgdp | | W, (q,p)dqdp
0.1 | 0.6 | 0.3779 1.2994 0.9999
04 | 0.8 | 1.3423 2.5356 0.9940
0.1 | 0.1 0.0211 1.0148 0.9999
0.1 | 0.8 | 0.6424 1.5609 0.9999
0.05 | 0.1 | 0.0005 1.0004 0.9999
0.05 | 0.6 | 0.1431 1.1043 0.9999
0.6 | 0.1 | 0.4947 1.4090 0.9999

Tabla 1: Valores de la Negatividad Logaritmica de la funcién de Wigner (NLW) y las
integrales asociadas para diferentes parametros v y 7.
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Figura 10: Evolucion, en funcion de la dimension del espacio de Hilbert (V), de la NLW,
y las integrales W (q, p) y |W (¢, p)| para el estado cony = 0.1y r = 0.6

Estos resultados incitan, naturalmente, a la pregunta: ;cual es el estado de fase ciibica con
mayor cantidad de recurso?, es decir, ;cual combinacion de (vy,r) es la que maximiza la
NLW? Como ya se ha mencionado, la dimension del espacio de Hilbert que se utilice para
las aproximaciones es un elemento clave que influye en la precision de los resultados, lo
cual conlleva a una pregunta mas: ;Qué valor de N dard una buena aproximacion para
estos estados con el fin de asegurar que los resultados obtenidos para la NLW sean muy
cercanos a los que se obtendrian si se utilizase un espacio de Hilbert infinito? Particular-
mente, ;haber hecho N = 400 es una buena eleccién?
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Claramente, para dar respuesta a la primer pregunta, es necesario responder esta ultima.
Esta puede obtenerse a partir de estimar una /V suficientemente grande como para hacer
que [ W (g, p)dqdp ~ 1. En este caso, resulta de bastante utilidad observar la evolucién de
la NLW, [ |W(q,p)|dqdpy | W(q,p)dgdp en funcién de N. De manera particular, para
el estado de fase cibica con (y = 0.1, = 0.6), esta evolucién se muestra en la Fig.
para el cual se encontré que:

Prom+to
NLWy106 0.379660 + 0.017603

S IWo106(q,p)|dgdp | 1.301129 £+ 0.015714

I Wo106(q,p)dgdp | 0.999985 £ 0.000046

Tabla 2: Estadisticas para |y, ) con (v = 0.1,7 = 0.6).

Por otra parte, también se ha hecho lo mismo para el estado con los pardmetros mas gran-
des que se considerardn, a saber, v = 0.5y r = 1.7. Asi, para este estado, la evolucién
con respecto a IV se observa en la Fig. [TT| mientras que los promedios hallados para este
estado se muestran en la Tabla [3] Estos valores surgen a partir del hecho de que, en las
referencias utilizadas, se ha encontrado que el limite experimentalmente alcanzado para
la amplitud de compresién es r ~ 1.7 [12], mientras que tedricamente se han explorado
valores de v ~ 0.5 (aunque esto Gltimo, para un valor de r ~ 0.58) [12].

Prom+o
NLWy 517 2.080062 + 0.263242

S IWos17(q,p)|dgdp | 4.286781 £ 0.609970

I Wos17(q,p)dgdp | 0.758956 £+ 0.058115

Tabla 3: Estadisticas para el estado de fase ciibicacony = 0.5y r = 1.7.
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Figura 11: Evolucidn, en funcidn de la dimension del espacio de Hilbert (/V), de la NLW,
y las integrales de W (q,p) y |[W(q,p)| parael estadocony = 0.5y r = 1.7.

Debido a que el valor promedio de [ W 517(q, p)dgdp < 1, el estado |, ) con valores
(v = 0.5,r = 1.7) no puede ser considerado como un estado valido para nuestros pro-
positos. Esto es asi ya que, al no poder incrementar los limites de integracion, el valor de
esta integral no tiende a 1 (incrementarlos provoca un desbordamiento numérico, por lo
que actualmente se han tomado los limites tales que ¢ € [—6,6] y p € [—5, 26]). Siendo
asi que seria de esperarse que valores mayores de (-, ) tampoco tiendan a la unidad, de
modo que este par de valores pueden ser buenos candidatos para ser valores maximos a
considerar para estos parametros.

Entonces, para responder la pregunta sobre los valores que maximizan la NLW se ha re-
currido a un cédigo que realice un barrido de todas las combinaciones posibles para los
pares (7, r) tales que v € [0.01,0.05] y » € [0.1,1.7] con pasos discretos de 0.01 entre
cada valor de v y de 0.1 entre cada valor de r. Esto se ha graficado en un mapa de ca-
lor (Fig.[12), para el cual, ademds de buscar aquel estado que maximiza la NLW, se ha
condicionado para que cumpla con [ W(q, p)dgdp ~ 1 4+ 0.02, es decir, se ha dado (ar-
bitrariamente) una tolerancia del 2 %. Asi se han encontrado que los pardmetros éptimos
sony = 0.29 y r = 1.3, dando los valores mostrados en la Tabla 4}

NLWopt ~ 1.9019
f |Wopt(Q7p)|dqdp ~ 3.7371
S Wopt(q, p)dgdp | = 0.9827

Tabla 4: Estadisticas para el estado de fase ctibica con pardmetros 6ptimos encontrados
(v =0.29,r = 1.3).
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CZ2 y=0.1,r= 0.6 (Brunelli)
Negatividad Logaritmica de Wigner (NLW) para distintas combinaciones de (y,r) == y=0.4,r=0.8 (Brunell)
1 Optimo global
[ Optimo experimental

y= 0.1, r= 0.6 (Brunelli):
ILW:

[wiq, p)dqdp = 1.000

Cubicidad (y)

y= 0.4, r= 0.8 (Brunelli):
NLW: 1.342

y=0.40

r=0.80

[wigq. p)dqdp =0.994

Optimo global:
NLW: 1.902
y=029
r=1.30

[wiq. p)dqdp = 0.983
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Figura 12: Mapa de calor para diferentes valores de (-, 7). En color gris se muestran los
estados que no cumplen con la normalizacion, es decir: [ W (q, p)dgdp % 1.00 & 0.02.

Este mapa de calor (Fig.[I2)) también muestra los dos estados mencionados en la Ref. [23],
es decir, aquellos con pardmetros (y = 0.1,7 = 0.6) y (7 = 0.4, = 0.8) (en recuadros
color gris con linea punteada y sélida, respectivamente), ademds de remarcar el estado
que maximiza la NLW (color rojo) y el estado que combina los limites experimentalmente
alcanzados (de manera independiente) para la amplitud de compresién » = 1.7 [12]], y la
cubicidad v = 0.11 [28] 29] (color verde). Debido a que se ha respetado la condicién de
que el valor de la normalizacién esté dentro de la tolerancia del 2 % otorgada, este tltimo
estado se ha recorrido al correspondiente a los valores (y = 0.11,7 = 1.3), pues, como
puede verse en el mapa de calor, el estado con parametros (v = 0.11,7 = 1.7) cae en
la region grisicea, de modo que no cumple con el criterio de normalizacién impuesto,
nuevamente, debido a que los limites de integracion no son lo suficientemente “grandes”
como para capturar toda la informacién del estado.
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La informacion obtenida para este estado se muestra en la Tabla [5}

NLW. ., ~ 1.9537
f |Wexp1 (Qap)|dqdp ~ 3.8736
J Weap, (¢, p)dqdp | =~ 0.8869

Tabla 5: Informacion para el estado de fase cubica con pardmetros miximos alcanzados
experimentalmente (y = 0.11,7 = 1.7). Este estado no cae dentro de la tolerancia otor-
gada a la normalizacion.

Por otra parte, para el estado que si ha cumplido con la normalizacién, es decir, el que
tiene los valores (y = 0.11, 7 = 1.3), la informaci6n se muestra en la Tabla|6}

NLWexpg ~ 1.4755
S Weap, (¢, p)|dgdp | ~ 2.7808
f Wea:pz (Qap)dqdp ~ 0.9808

Tabla 6: Informacién para el estado de fase cubica con pardmetros cercanos a los méxi-
mos alcanzados experimentalmente (v = 0.11,7 = 1.3). Este estado si cae dentro de la
tolerancia otorgada a la normalizacion.

Otro resultado que puede ser interesante, es visualizar la evolucién de la NLW en fun-
cién de los parametros (v, r), variando inicamente uno de los dos y manteniendo fijo el
otro. Esto se ha hecho unicamente para tres valores de ~ y r, particularmente, los co-
rrespondientes a los mencionados en la Ref.[23] y los que maximizan la NLW, segtn lo
encontrado en el mapa de calor de la Fig. Gréficamente esto aparece en las Figs.[13|y
14

Las dltimas dos figuras (I3]y [I4) muestran la evolucién de la NLW en funcién de r y 7,
respectivamente. En ellas puede observarse que, para valores fijos de cubicidad, conforme
esta es mayor, la NLW también lo serd; a partir de esto, conforme el valor de r se incre-
menta, nuevamente la NLW lo hard de manera casi lineal. Sin embargo, este incremento
contrasta con el que se tiene si, en lugar de vy, es r el pardmetro fijo, pues el incremento de
la negatividad logaritmica conforme la cubicidad aumenta sucede de manera mas répida
para valores pequefios de 7 siguiendo una forma parecida al crecimiento que muestra la
funcion raiz cuadrada.
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Evolucidon de la NLW vs r para diferentes y
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Figura 13: Evolucién de NLW(r) para los valores fijos de v = 0.1,y = 029y v =
0.5. Las zonas grises son asociadas a los estados que no cumplen con la normalizacién
buscada.

Evolucion de la NLW vs y para diferentes r

2.0

s

1.0

0.5

Negatividad Logaritmica de Wigner (NLW)

0.0 = e e e e e e e e e e e

Cubicidad (y)

Figura 14: Evolucion de NLW(+y) para los valores fijos de r = 0.6, = 0.9y r = 1.3. Las
zonas grises son asociadas a los estados que no cumplen con la normalizacion buscada.
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6. Conclusiones

El objetivo principal, ademds de caracterizar los estados de fase cubica, ha sido determinar
la combinacion de valores (v, ) que maximicen el recurso presente en este tipo de estados
mediante la negatividad logaritmica de la funcién de Wigner, lo cual ha podido lograrse
de manera local en un rango especifico de valores para estos pardmetros, siendo limitados
por errores numéricos.

Como ya se ha comentado, existen diferentes factores que juegan un papel importante en
la precision de los resultados que pueden obtenerse sobre la NLW calculada mediante los
métodos empleados en este trabajo. Uno de ellos tiene que ver con el tamaio del espacio
de Hilbert, el cual debe ser lo suficientemente grande como para poder generar una buena
aproximacion de la funcién de Wigner de los estados de fase ctbica. Sin embargo, esto no
aplica para la aproximacion de f(v) mediante una serie de Taylor, ya que la convergencia
de la serie no se alcanza antes del desbordamiento numérico para valores “grandes” de N.
No obstante, al hacer uso de QuTiP, parece ser que la eleccién de N = 400 ha entregado
resultados razonables que no distan demasiado de los que se obtienen mediante espacios
mucho mayores y que, por ende, son mas demandantes de poder de computo.

Por otra parte, este no es el unico factor, pues el espacio sobre el que se integra para
obtener W (g, p) también es relevante, ya que, para distintos valores de 7 y r, se requie-
re integrar sobre espacios mds grandes. No obstante, esto provoca un desbordamiento
computacional, por lo que no es posible incrementar los limites de integracion arbitraria-
mente. Esto se ha reflejado en las zonas grises en el mapa de calor mostrado (Fig. [12)
ya que, si se pudieran incrementar estos limites, es probable que pudieran cumplir con la
tolerancia otorgada a la normalizacién del estado, lo cual, podria resultar en que el estado
que maximice la NLW sea distinto al que se encontrd actualmente.

Dentro de los limites con los que se ha podido trabajar en este estudio, se ha observado que
el hecho de incrementar alguno de los dos pardmetros en el estado de fase cubica (7, )
incrementa la negatividad de la funcién de Wigner, siempre y cuando v # 0, aunque el
valor de este dltimo es el que tiene mds peso dentro de dicha negatividad.

Para mejorar los resultados obtenidos en el mapa de calor de la Fig.[12] podrian intentarse
algunas cosas como escribir el cddigo en otro lenguaje o, en lugar de utilizar métodos
numéricos para aproximar el valor de cada funcién de Wigner, utilizar una expresion ana-
litica. Otro camino puede ser investigar los estados de fase cubica para otras distribuciones
de cuasi-probabilidad, como las funciones de Husimi y Glauber-Sudarshan.
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A. Codigos

Para poder ejecutar los c6digos, escritos en Python, es necesario instalar la libreria Qu7iP
mediante:

pip install qutip

A.1. Comparacion entre QuTiP y expansion en serie

Para realizar las figuras [ [5] y [7] se ha utilizado el siguiente c6digo, aunque con los valores
de N = 35,15y 400, respectivamente:

import numpy as np

import matplotlib.pyplot as plt
from qutip import =«

from scipy.special import factorial

N = 35

gamma = 0.1

r = 0.6

theta = np.pi

c = 1/np.sqgrt(2)
xvec = np.linspace (-6, 6, 100)
yvec = np.linspace (-5, 26, 100)

fig, (axl, ax2) = plt.subplots(l, 2, figsize=(20, 8)
plt.subplots_adjust (wspace=0.3)

# Grafica 1: Calculo directo con QuTiP
a = destroy (N)

adag = a.dag()

x = c » (a + adag)

Gamma = (1j » gamma * X**3) .expm()
xi = r » np.exp(lj * theta)

S = squeeze (N, xi)

vacuum = basis (N, 0)

state = Gamma * S * vacuum

W1l = wigner (state, xvec, yvec, method='iterative')
Wl_max = np.max(Wl).round(4)
Wl_min = np.min(W1l) .round(4)

contl = axl.contourf (xvec, yvec, Wl, 100, cmap="seismic",
levels=np.linspace(-1/np.pi, 1/np.pi, 400)

axl.set_title(f'Cédlculo directo con QuTiP\n$\gamma = {gammal$, S$r = {r}s$', pad=15)

axl.set_xlabel('S$gS$', fontsize=12)

axl.set_ylabel ('Sp$', fontsize=12)

axl.text (0.05, 0.95,
f"Max: {Wl_max}\nMin: {Wl_min}",
transform=axl.transAxes,
color="'white',
fontsize=12,
verticalalignment="'top',
bbox=dict (facecolor="'black', alpha=0.5))

axl.text(-0.1, 1.05, '"(a)', transform=axl.transAxes,
fontsize=16, fontweight='bold', va='top')

# Grdafica 2: Aproximacidn por expansion en serie
m_max = 5

j_max = 150

N_approx = 35
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def squeezed_vacuum_state (r, theta, m_max, N):

states = []

coefficients = []

for m in range (m_max + 1):
num = (—1)+*m * np.sqrt(factorial (2+m))
den = 2xxm * factorial (m)
coeff = num / den % np.exp(lj » m * theta) * (np.tanh(r))+xm
coeff /= np.sqgrt (np.cosh(r))
coefficients.append(coeff)
state = basis (N, 2xm)
states.append (state)

return sum([coeff * state for coeff, state in zip(coefficients, states)])

def gamma_operator_expansion (gamma, j_max, N):
a = destroy (N)
adag = a.dag()
x = c * (a + adag)

gamma_op = 0
for j in range(j_max + 1):
term = (1j » gamma * x**3)*+7J / factorial (J

gamma_op += term
return gamma_op

xi_state = squeezed_vacuum_state(r, -np.pi, m_max, N_approx)
gamma_op = gamma_operator_expansion (gamma, j_max, N_approx)
gamma_r_state = gamma_op * xi_state

W2 = wigner (gamma_r_state, xvec, yvec, method='iterative')
W2_max = np.max (W2) .round(4)
W2_min = np.min(W2) .round (4)

cont2 = ax2.contourf (xvec, yvec, W2, 100, cmap="seismic",
levels=np.linspace(-1/np.pi, 1/np.pi, 400)
ax2.set_title (f'Aproximacién por expansidén en serie\n$\gamma {gamma}$, Sr = {r}$', pad=15)
ax2.set_xlabel ('$SgS$S', fontsize=12)
ax2.set_ylabel ('$pS$', fontsize=12)

ax2.text (0.05, 0.95,
f'"Max: {W2_max}\nMin: {W2_min}",
transform=ax2.transAxes,
color="'white',
fontsize=12,
verticalalignment="top',
bbox=dict (facecolor="'black', alpha=0.5))

ax2.text (-0.1, 1.05, '"(b)', transform=ax2.transAxes,
fontsize=16, fontweight='bold', va='top')

cbar_ax = fig.add_axes([0.25, 0.01, 0.5, 0.03])

cbar = fig.colorbar(contl, cax=cbar_ax, orientation='horizontal',
label="SW(q,p)$", extend="both")

cbar.set_ticks([-1/np.pi, -0.2, -0.1, 0, 0.1, 0.2, 1/np.pil)

cbar.set_ticklabels(['-$1/\pi$', '-0.2', '-0.1', 'O', 'O.1', '0.2', '$1/\pis'])

plt.show()
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A CODIGOS

A.2.

import numpy as np
import qutip as qt

def wigner_log_negativity_sum(state, xvec, yvec):
W = gt.wigner (state, xvec, yvec)

dx = xvec|[l] - xvec[0]
dy = yvec[l] - yvec[0]

I_abs = np.sum(np.abs (W)) * dx » dy
I_total = np.sum(W) » dx * dy

WLN = np.log2 (I_abs)
return WLN, I_abs, I_total

N = 400
gamma =
r =1.2

theta = np.pi
c =1 / np.sgrt(2)

xvec = np.linspace (-5, 5, 100)
yvec = np.linspace (-5, 25, 100)

a = gt.destroy (N)
adag = a.dag()
x = c % (a + adag)

Gamma = (1j » gamma * X**3) .expm/()
xi = r « np.exp(lj » theta)

S = gt.squeeze (N, xi)

vacuum = gt.basis (N, 0)

state = Gamma * S % vacuum

NLW e integrales asociadas para (-, ) especificas.

WLN, I_abs, I_total = wigner_log_negativity_sum(state, xvec, yvec)

print (f"Negatividad Logaritmica de Wigner (WLN) :
print (f"Integral |W(g, p)|:
print (f"Integral W(g, p):
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{WLN}"™)
{I_abs} (Debe ser > 1 si hay negatividad)")
{I_total} (Debe ser 1)")
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A.3. Funciones IV (q, p) bajo el efecto de variar v 6 r

Las figurag8]y [9] se han realizado mediante el siguiente cédigo, con ligeras variaciones en
las listas que contienen los valores de v y r, segin el pardmetro que se mantiene fijo y el
que varia:

import numpy as np
import matplotlib.pyplot as plt
from qutip import =*

N = 400

theta = np.pi

c = 1/np.sqgrt (2)

xvec = np.linspace (-6, 6, 100)
yvec = np.linspace (-5, 26, 100)

# Pardmetros a variar

gamma_groups = [0.1, 0.3, 0.4]
r_values = [0.0, 0.1, 0.6, 1.2]
labels = [f' ({chr(97 + 1)})' for i in range(12)]

fig, axes = plt.subplots (3, 4, figsize=(20, 12))
plt.subplots_adjust (wspace=0.4, hspace=0.5)

a = destroy (N)
adag = a.dag()
x = c * (a + adag)

for row, gamma in enumerate (gamma_groups) :
for col, r in enumerate (r_values):
ax = axes|[row, col]
label_idx = row % 4 + col

vacuum = basis (N, 0)

if r == 0.0:

state = vacuum

title = f'Vacio\n($\\gamma = 0$, Sr = 0$)'
else:

Gamma = (1j » gamma * xX**3) .expm/()

xi = r » np.exp(lj *» theta)

S = squeeze (N, xi)

state = Gamma * S * vacuum

title = f'$\\gamma = {gamma}$, S$r = {r}$"'

W = wigner (state, xvec, yvec, method='clenshaw')

W_max = np.max (W) .round (4)
W_min = np.min (W) .round(4)
cont = ax.contourf (xvec, yvec, W, 100, cmap="seismic",

levels=np.linspace(-1/np.pi, 1/np.pi, 400)
ax.set_title(title, pad=15)
ax.set_xlabel ('$g$', labelpad=10, fontsize=12)
ax.set_ylabel ('Sp$', labelpad=10, fontsize=12)

if r == 0.0:
ax.set_xlim (-6,
ax.set_ylim (-6

else:
ax.set_xlim(-6, 6)
ax.set_ylim (-5, 26)

o O

)
)

’

ax.text (0.05, 0.85,
f"Max: {W_max}\nMin: {W_min}",
transform=ax.transAxes,
color="white',
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fontsize=9,
bbox=dict (facecolor="black', alpha=0.5))

ax.text (-0.1, 1.15, labels[label_idx], transform=ax.transAxes,
fontsize=12, fontweight='bold', wva='top', ha='right')

cbar_ax = fig.add_axes([0.25, 0.03, 0.5, 0.02])
cbar = fig.colorbar (cont, cax=cbar_ax, orientation='horizontal', label="S$W(g,p)S")
cbar.ax.set_xlabel ("SW(qg,p)S$", fontsize=12)

cbar.set_ticks([-1/np.pi, -0.2, -0.1, 0, 0.1, 0.2, 1/np.pil)
cbar.set_ticklabels(['-$1/\pi$', '-0.2', '-0.1', '0O', 'O.1', '0.2', '$1/\pis$'], fontsize=12)
plt.show()
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A.4. Evolucion de la NLW en funcion de N

Las figuras [I0] y [I1] se han hecho a partir del siguiente c6digo, variando tnicamente los
valores de los pardmetros (v, 7):

import numpy as np
import qutip as qt
import matplotlib.pyplot as plt

def wigner_log_negativity_sum(state, xvec, yvec):
W = gt.wigner (state, xvec, yvec)
dx = xvec[l] - xvec[0]
dy = yvec[l] - yvec[O0]
I_abs = np.sum(np.abs (W)) * dx * dy
I_total = np.sum(W) » dx * dy
WLN = np.log2 (I_abs)
return WLN, I_abs, I_total

gamma = 0.5
r =1.7
theta = np.pi

c =1/ np.sgrt(2)
xvec = np.linspace (-6, 6, 100)
yvec = np.linspace (-5, 26, 100)

N_values = np.arange(5, 405, 5)
WLN_1list [1

I_abs_list = []

I_total_list = []

for N in N_values:
try:
a = gt.destroy (N)
adag = a.dag()

x = c * (a + adag)

Gamma = (1j * gamma * x*+3) .expm()

xli = r « np.exp(lj % theta)

S = gt.squeeze (N, xi)

vacuum = gt.basis (N, 0)

state = Gamma * S x vacuum

WLN, I_abs, I_total = wigner_log_negativity_sum(state, xvec, yvec)

WLN_1list.append (WLN)
I_abs_list.append(I_abs)
I_total_list.append(I_total)

print (f"N = {N}: WLN = {WLN:.6f}, I_abs = {I_abs:.6f}, I_total = {I_total:.6f}")

except Exception as e:
print (f"Error en N = {N}: {str(e)}")
WLN_1list.append (np.nan)
I_abs_list.append(np.nan)
I_total_list.append (np.nan)

fig, axl = plt.subplots(figsize=(12, 6))

color WLN = 'tab:blue'

axl.set_xlabel ('Dimensién del espacio (N)', fontsize=12)

axl.set_ylabel ('Negatividad Logaritmica de Wigner ($SNLW$)', color=color_WLN, fontsize=12)
axl.plot (N_values, WLN_list, 'o-', color=color_WLN, label='SNLWS', markersize=5)
axl.tick_params (axis='y', labelcolor=color_WLN)

axl.grid(True, linestyle='--', alpha=0.6

ax2 = axl.twinx ()

color_I_abs = 'tab:red'

ax2.set_ylabel ('Integral de $|W(g, p)|$', color=color_I_abs, fontsize=12)

ax2.plot (N_values, I_abs_list, 's-', color=color_I_abs, label='S$|W(g, p)|$', markersize=5)

ax2.tick_params (axis='"y', labelcolor=color_I_abs)
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ax3 = axl.twinx ()

color_I_total = 'tab:green'

ax3.spines|['right'].set_position(('outward', 60))

ax3.set_ylabel ('Integral de $W(g, p)$', color=color_I_total, fontsize=12)

ax3.plot (N_values, I_total_list, 'd-', color=color_I_total, label='SW(qg, p)S$', markersize=b5)
ax3.tick_params (axis='y', labelcolor=color_I_total)

axl.set_ylim(0, max (WLN_list) * 1.1)
ax2.set_ylim(l, max(I_abs_list) * 1.1)
ax3.set_ylim(min(I_total_list), 1.01)

plt.title (£'SNLWS del estado $|\gamma, r \\rangle$ con $\gamma = {gammal$ y S$r = {r}s’',
fontsize=14)

fig.legend(loc=(0.6, 0.9), bbox_to_anchor=(0.9, 0.9)

fig.tight_layout ()

plt.show ()
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A.5. Mapa de calor de NLW(~, r)

El mapa de calor de la fig.[12]se ha realizado con:

import numpy as np

import qutip as qt

import matplotlib.pyplot as plt
import seaborn as sns

from tgdm import tgdm

import pandas as pd

N = 400

theta = np.pi

c = 1/np.sqgrt (2)

xvec = np.linspace (-6, 6, 100)
yvec = np.linspace (-5, 26, 100)

gamma_values = np.linspace(0.01, 0.5, 50)
r_values = np.linspace(0.1, 1.7, 17)
NLW_matrix = np.zeros((len(gamma_values), len(r_values)))

I_total_matrix = np.zeros_like (NLW_matrix)
I_abs_matrix = np.zeros_like (NLW_matrix)
Wigner_values = {}

def calcs (N, gamma, r, theta, xvec, yvec):

try:

a = gt.destroy (N)

x = cx(a + a.dag())

state = (ljrgamma~* (x+**3)) .expm() *» gt.squeeze (N, rxnp.exp(ljrtheta)) » gt.basis(N,O0)

W = gt.wigner (state, xvec, yvec, method='clenshaw')

dxdy = (xvec[l]-xvec[0])=*(yvec[l]-yvec[0])

return np.log2 (np.sum(np.abs (W))~dxdy), np.sum(W)*dxdy, np.sum(np.abs (W))*dxdy, W
except:

return np.nan, np.nan, np.nan, np.nan

for i, gamma in enumerate (tgdm(gamma_values, desc="Calculando métricas")):
for j, r in enumerate (r_values):
NLW_matrix[i, j], I_total_matrix[i,j], I_abs_matrix[i,j], W = calcs (N, gamma,
r, theta,
xvec, yvec)
Wigner_values[f"gamma_{gamma:.4f} r {r:.4f}"] = W

data = []
for i, gamma in enumerate (gamma_values) :
for j, r in enumerate (r_values):
data.append ({

'gamma': gamma,
'r': r,
'NLW': NLW_matrix[i, ],
'Integral W': I_total_matrix[i,J],
'Integral_abs_W': I_abs_matrix[i, j],
'Wigner_values_key': f"gamma_{gamma:.4f}_r {r:.4f}"

b

df = pd.DataFrame (data)
df .to_csv('ValoresNLW.csv', index=False)

np.savez ('Wigner_values.npz', »*Wigner_values)

tolerance = 0.02

valid_I_total = np.abs(I_total_matrix - 1) < tolerance

labl = '$\gamma=0.1, r=0.6$ (Brunelli)'

lab2 = '$\gamma=0.4, r=0.8$ (Brunelli)'

highlight_states = [
{'gamma': 0.1, 'r': 0.6, 'color': 'gray', 'linestyle': '-=', 'label': labl},
{'gamma': 0.4, 'r': 0.8, 'color': 'gray', 'linestyle': '-', 'label': lab2}
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if np.any(valid_I_total):

valid_NLW = np.where(valid_TI_total, NLW_matrix, -np.inf)
max_NLW = np.nanmax (valid_NLW)
max_idx = np.where ((NLW_matrix == max_NLW) & valid_TI_total)

opt_gamma, opt_r
opt_I_total I_total matrix([max_idx[0][0],

highlight_states.append ({

gamma_values [max_1idx[0][0]],

r_values[max_idx[1][0]]
max_idx[1]1[0]]

'gamma': opt_gamma,
'r': opt_r,
'color': 'red',
'linestyle': '-',
'label': 'Optimo global',
'NLW': max_NLW,
'I_total': opt_I_total

})

else:
max_NLW, opt_gamma, opt_r, opt_I_total np.nan, np.nan, np.nan, np.nan

gamma_mask
r_mask (r_values >=

experimental_mask

(gamma_values >= 0.01) & (gamma_values <=
0.1) & (r_values <= 1.7)
np.outer (gamma_mask, r_mask)

if np.any(valid_I_total & experimental_mask) :

valid_exp_NLW
max_exp_NLW =
max_exp_idx
opt_exp_gamma, opt_exp_r
opt_exp_I_total = I_total_matrix[max_exp_idx[0][0],
highlight_states.append ({

'gamma': opt_exp_gamma,

'r': opt_exp_r,

'color': 'green',

'linestyle': '-',

'label': 'Optimo experimental!,

"NLW': max_exp_NLW,

'I_total': opt_exp_I_total

np.nanmax (valid_exp_NLW)
np.where ( (NLW_matrix == max_exp_NLW)

b

plt.figure(figsize= (14, 9)
cmap sns.color_palette ("viridis",
cmap.set_bad(color="lightgrey"')

as_cmap=True)

plot_matrix = np.where(valid_I_total, NLW_matrix,

np.where (valid_I_total & experimental_mask, NLW_matrix,

gamma_values [max_exp_1idx[0][0]1],

0.11)

-np.inf)

& valid_I_total & experimental_mask)
r_values[max_exp_1idx[1][0]]
max_exp_1idx[1][0]]

np.nan)

(SNLWS) "}

ax = sns.heatmap (
plot_matrix,
xticklabels=[f"{r:.2f}" for r in r_values],
yticklabels=[f"{:.2f}" for in gamma_values],
cmap=cmap,
annot=False,
cbar_kws={'label': 'Negatividad Logaritmica de Wigner
)
txtl = "Negatividad Logaritmica de Wigner ($NLW$S) "
txt2 = "para distintas combinaciones de ($\gamma, r$)"
plt.title(txtl, pad=20, fontsize=12)
plt.xlabel ("Amplitud de compresidén ($r$)", fontsize=12)
plt.ylabel ("Cubicidad ($\gamma$)", fontsize=12)
for state in highlight_states:
if 'gamma' in state and 'r' in state:
i = np.where (gamma_values >= state['gamma']) [0][0]
j = np.where(r_values >= state['r']) [0][0]
edgecolor = state['color']
linestyle = state.get('linestyle', '-")
linewidth = 2 if linestyle == '-' else 1.5

ax.add_patch (plt.Rectangle (
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(3, 1), 1, 1,
fill=False,
edgecolor=edgecolor,
linestyle=linestyle,
linewidth=1linewidth,
label=state.get ('label', "")))

info_text = ""
for state in highlight_states[-2:]:
if 'NLW' in state:
info_text += (f"{state['label']}:\n"

fUSNLWS: S{state['NLW']:.3f}s\n"

f"$\gamma = {state['gamma']:.2f}S\n"

f"Sr = {state['r']:.2f}s\n"

f"$\int W(g,p)dadp = {state['I_total']:.3f}S\n\n")

plt.text (1.05, 0.15,
info_text,
transform=ax.transAxes,
color="white',
ha='right', va='center',
bbox=dict (facecolor="'black', alpha=0.4))

plt.legend (bbox_to_anchor=(1.05, 1.1), loc='upper right')

plt.tight_layout ()
plt.show()
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A.6. Evolucion de NLW(v) y NLW(r)

Las figuras[13]y [I4] se han hecho a partir del siguiente c6digo:

import numpy as np

import qutip as qt

import matplotlib.pyplot as plt
from tgdm import tgdm

N = 400

theta = np.pi

c = 1/np.sqgrt (2)

xvec = np.linspace (-6, 6, 100)
yvec = np.linspace (-5, 26, 100)

def calculate_WLN (N, gamma, r, theta, xvec, yvec):

try:
a = gt.destroy (N)
x = cx(a + a.dag())
state = (ljxgammax* (xx*3)) .expm() * gt.squeeze (N, rxnp.exp(lj*theta)) » gt.basis(N,O0)
W = gt.wigner (state, xvec, yvec)
dxdy = (xvec[l]-xvec[0])*(yvec[l]-yvec[O])
return np.log2 (np.sum(np.abs (W) ) »dxdy)
except:

return np.nan

# 1. Grdfico con gamma
gamma_values = [0.1, 0.5, 1]
r_range = np.linspace(0.1, 1.7, 33)

series_config = {
0: { # =0.1
'color': 'b',
'marker': 'o'
'special_sections': [
{'start': 1.4, 'end': 1.7, 'color': 'lightgray', 'marker': 'o'}
]
o
1: { # =0.5
'color': 'g',
'marker': 'o'
'special_sections': [
{'start': 1.1, 'end': 1.7, 'color': 'lightgray', 'marker': 'o'}
]
¥
2: { # =1.0
'color': 'r',
'marker': 'o'
'special_sections': [
{'start': 0.6, 'end': 1.7, 'color': 'lightgray', 'marker': 'o'}

]

plt.figure(figsize= (10, 6)

print ("\nCalculando WLN vs r para diferentes ...")
for idx, gamma in enumerate (gamma_values) :
WLN_vs_r = []
for r in tgdm(r_range, desc=f' = {gamma}'):
wln = calculate_WLN (N, gamma, r, theta, xvec, yvec)
WLN_vs_r.append(wln)

config = series_config[idx]

plt.plot (r_range, WLN_vs_r, f"{config['marker']}-",
color=config['color'], label=f' = {gammal}')

if config['special_sections'] is not None:
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for section in config['special_sections']:
mask = (r_range >= section['start']) & (r_range <= section['end'])
if any(mask):
plt.plot (r_range[mask], np.array (WLN_vs_r) [mask],
f"{section['marker']}-",
color=section['color'])

plt.axhline (0, color='k', linestyle='--"', alpha=0.5)

plt.xlabel ("Amplitud de compresidén (Sr$)", fontsize=12)

plt.ylabel ("Negatividad Logaritmica de Wigner (SNLWS$)", fontsize=12)
plt.title("Evolucidén de la SNLWS vs S$r$ para diferentes $\gammas$", fontsize=14)
plt.grid(True, alpha=0.3)

plt.legend()

plt.tight_layout ()

plt.show()

# 2. Grdfico con r fijo
r_values = [0.6, 0.9, 1.3]
gamma_range = np.linspace(0.1, 1.0, 19)

series_config_2 = {
0: { #r =20.6
'color': 'purple',

AT

'marker':
'special_sections': [
{'start': 0.82, 'end': 1.0, 'color': 'lightgray', 'marker': 'o'}

o

s
1: { #r =0.9
'color': 'orange',

AT

'marker':
'special_sections': [
{'start': 0.63, 'end': 1.0, 'color': 'lightgray', 'marker': 'o'}

o

by
2: { #r=1.3

'color': 'brown',

'marker': 'o'

'special_sections': [
{'start': 0.18, 'end': 0.27, 'color': 'lightgray', 'marker': 'o'},
{'start': 0.31, 'end': 1.0, 'color': 'lightgray', 'marker': 'o'}

plt.figure(figsize= (10, 6))

print ("\nCalculando WLN vs para diferentes r...")
for idx, r in enumerate (r_values):
WLN_vs_gamma = []
for gamma in tgdm(gamma_range, desc=f'r = {r}'):
wln = calculate_WLN (N, gamma, r, theta, xvec, yvec)
WLN_vs_gamma.append (wln)

config = series_config 2[idx]

plt.plot (gamma_range, WLN_vs_gamma, f"{config['marker']}-",
color=config['color'], label=f'r = {r}'")

if config['special_ sections'] is not None:
for section in config['special_sections']:
mask = (gamma_range >= section['start']) & (gamma_range <= section['end'])
if any(mask):
plt.plot (gamma_range[mask], np.array (WLN_vs_gamma) [mask],
f"{section['marker']}-",
color=section['color'])

plt.axhline (0, color='k', linestyle='—--', alpha=0.5)

plt.xlabel ("Cubicidad ($\gamma$)", fontsize=12)
plt.ylabel ("Negatividad Logaritmica de Wigner (SNLWS$S)", fontsize=12)

50 PROYECTO TERMINAL I



A.6 Evolucién de NLW(v) y NLW(r) A CODIGOS

plt.title("Evolucidén de la S$SNLWS$ vs $\gamma$ para diferentes $r$", fontsize=14)
plt.grid(True, alpha=0.3)

plt.legend()

plt.tight_layout ()

plt.show()
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