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1 RESUMEN

1. Resumen

Este trabajo presenta un análisis teórico de un sistema cuántico formado por dos partícu-
las indistinguibles confinadas en un doble pozo infinito de potencial. Primero se resuelve
la ecuación de Schrödinger independiente del tiempo para una partícula y, a partir de ahí,
se construyen las funciones de onda simétrica y antisimétrica que describen al sistema de
dos partículas. Posteriormente, se cuantifica la localización o deslocalización espacial de
la densidad de probabilidad conjunta y de las densidades reducidas mediante medidas de
teoría de la información, como la entropía de Shannon, y de correlación, como la informa-
ción mutua, el coeficiente de correlación de Pearson y la varianza al realizar variaciones
de los parámetros del sistema, tales como, el ancho del pozo (b) y la altura de la barrera
(V).

Palabras clave: Mecánica cuántica, ecuación de Schrödinger, doble pozo infinito de po-
tencial, entropía de Shannon, información mutua, coeficiente de correlación de Pearson,
varianza, deslocalización espacial.
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2 INTRODUCCIÓN

2. Introducción

La mecánica cuántica surge a principios del siglo XX como una rama de la física para
describir el comportamiento de fenómenos a nivel atómico, ya que la mecánica clásica no
podía describir de manera apropiada ciertos fenónemos tales como la radiación de cuerpo
negro, el efecto fotoeléctrico, o la estabilidad de los átomos, esta rama impulsó la bús-
queda de nuevos conceptos para brindar una explicación. El primer descubrimiento llegó
alrededor del año 1900 cuando Max Planck introdujo el concepto de cuanto [9], postu-
lando que el intercambio de energía entre la radiación y sus alrededores se da en forma
de paquetes cuantizados [3]. En 1905, Albert Einstein ayudó a consolidar el concepto de
cuanto propuesto por Planck [10], reconociendo que la cuantización de ondas electromag-
néticas también debía ser válida para la luz, de modo que propuso que la luz en sí misma
está hecha de pequeños pedazos de energía o pequeñas partículas llamadas fotones, dan-
do la oportunidad a Einstein de dar una explicación al efecto fotoelétrico. Estos trabajos
así como el realizado por Compton [13] dieron las bases teóricas y experimentales para el
desarrollo de la mecánica cuántica. Una partícula confinada en una caja es uno de los siste-
mas más simples a estudiar en mecánica cuántica, el análisis de este tipo de sistemas tiene
su origen en la segunda década del siglo XX con el origen de la mecánica cuántica, con la
formulación ondulatoria propuesta por Schrödinger [14], este permite analizar fenómenos
fundamentales de la mecánica cuántica, tales como estados estados ligados y la cuanti-
zación de energía. En este proyecto se estudia un sistema compuesto por dos partículas
indistinguibles confinadas en un doble pozo de potencial. Abordaremos el problema en
una dimensión, haciendo un análisis mediante herramientas de teoría de la información.
Entre los conceptos que se utilizarán se encuentra la entropía de Shannon, que puede ser
interpretada como una medida de incertidumbre en una distribución probabilística, o la
información mutua, que puede ser entendida como la información contenida en una va-
riable acerca de otra correlacionada, dando paso a estudiar estas medidas en el espacio de
posición para así analizar las diferencias entre las densidades provenientes de las funcio-
nes de onda simétrica y antisimétrica, de modo que se pueda establecer una comparación
entre medidas como lo son la entropía de Shannon, entropía de las densidades reducidas,
y la varianza para así determinar cuál de estas medidas captura mejor el comportamiento
de la densidad de pares al variar los parámetros del sistema en comparación con canti-
dades como la varianza que es otra medida de la deslocalización espacial, y en términos
de medidas de correlación, estudiar la información mutua y el coeficiente de correlación
para poder determinar, cuál de estas medidas refleja de manera más precisa la correlación
entre las posiciones de las partículas al variar los parámetros del sistema.

2.1. Ecuación de Schrödinger

A principios del siglo XX, los modelos atómicos clásicos como el propuesto por Niels
Bohr [16], habían logrado explicar ciertos aspectos del átomo de hidrógeno; esta propuesta
postulaba que la materia poseía propiedades ondulatorias y sentó las bases para que se
reconsiderara la naturaleza de la partícula. Inspirado por esas ideas, Schrödinger [14]
introdujo una ecuación diferencial en la que la función de onda Ψ(r⃗, t) no era más que
una herramienta matemática para predecir la probabilidad de encontrar una partícula en
determinada región del espacio.
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Esta nueva ecuación respondía a una necesidad crucial, explicar por qué los átomos poseen
niveles discretos de energía y cómo se organiza la distribución de los electrones en los
orbitales. En su forma general, la ecuación de Schrödinger dependiente del tiempo para
una partícula de masa m en un potencial V (r⃗, t) se expresa como:

iℏ
∂Ψ(r⃗, t)
∂t

=
[
− ℏ2

2m∇2 + V (r⃗, t)
]

Ψ(r⃗, t). (2.1)

Donde el operador ∇2 es el laplaciano, este término representa la energía cinética del
sistema y tiene la siguiente forma:

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (2.2)

V (r⃗, t) corresponde al potencial externo que actúa sobre la partícula; este puede depender
tanto del tiempo como de la posición, y representa la energía potencial del sistema.

Para sistemas en estado estacionario, se asume una solución separable en función espacial
y temporal Ψ(r⃗, t) = ψ(r⃗)e−iEt

ℏ , que lleva a la ecuación de Schrödinger independiente del
tiempo:

− ℏ2

2m∇2ψ(r⃗) + V (r⃗)ψ(r⃗) = Enψ(r⃗). (2.3)

Esta ecuación se formula como un problema de valores propios, donde las funciones de
onda ψn(r⃗) son las funciones propias y los correspondientes valores En constituyen el
conjunto de niveles de energía permitidos. Así, cada índice n identifica un valor propio
En, y la cuantización de la energía se deriva de las condiciones de contorno y normali-
zación que restringen las soluciones no triviales [14]. La normalización de la función de
onda y la imposición de condiciones de contorno como las asociadas a este problema en
las cuales la función se anula en regiones para las cuales V → ∞, garantizan que las
soluciones sean físicamente aceptables. Para sistemas ideales como una partícula en un
pozo infinito de potencial, un oscilador armónico, las soluciones dadas son analíticas. En-
tre estos, el problema del doble pozo cuadrado de potencial infinito representa un caso en
el que las soluciones de la ecuación de Schrödinger pueden obtenerse de forma analítica
en cada región del potencial; sin embargo, la imposición de las condiciones de frontera
en este problema origina ecuaciones trascendentales para los valores propios (energías),
es decir, estas ecuaciones implican expresiones en las que las funciones trigonométricas y
exponenciales se combinan con los parámetros energéticos y para las cuales las soluciones
deben encontrarse mediante métodos numéricos. Esto representa un problema de valores
propios en los que existen infinitas raíces, para estos hay algoritmos como el método de
Newton-Raphson [15] que requiere tener una estimación inicial, y si la estimación inicial
no es buena esto podría llevar a una convergencia errónea o incluso a una divergencia en
el cálculo.

2.2. Mecánica cuántica de varias partículas

Dado que este sistema está compuesto por dos partículas, es necesario describir la diná-
mica de un sistema de N partículas, esto se puede obtener a partir de la descripción para
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una partícula. Se sabe que el estado de un sistema de N partículas sin espín está dado por
una función de onda Ψ(r⃗1, r⃗2, ..., r⃗N , t), donde el cuadrado de esta función de onda repre-
senta la densidad de probabilidad al tiempo t de encontrar la partícula 1 en el elemento
de volumen d3r1 centrado en r⃗1, la partícula 2 en su respectivo volumen respectivamente
hasta la N-ésima partícula [3].

Esta función de onda, Ψ, evoluciona en el tiempo acorde con la ecuación de Schrödinger:

iℏ
∂Ψ(r⃗1, r⃗2, ..., r⃗N , t)

∂t
= HΨ(r⃗1, r⃗2, ..., r⃗N , t). (2.4)

Donde el operador Ĥ es el operador hamiltoniano y tiene la siguiente forma que es una
generalización del caso de una sola partícula:

H =
N∑

j=1

ℏ2

2mj

∇2
j + V (r⃗1, r⃗2, ..., r⃗N , t). (2.5)

En el problema tratado en este proyecto, se estará considerando el caso en el que el poten-
cial es independiente del tiempo, de modo que la solución de la ecuación de Schrödinger
estará dada por estados estacionarios:

Ψ(r⃗1, r⃗2, ..., r⃗N , t) = ψ(r⃗1, r⃗2, ..., r⃗N)e−iEt/ℏ. (2.6)

Donde E es la energía total del sistema y ψ es la solución a la ecuación de Schrödinger
independiente del tiempo Ĥψ = Eψ. N∑

j=1

ℏ2

2mj

∇2
j + V (r⃗1, r⃗2, ..., r⃗N)

ψ(r⃗1, r⃗2, ..., r⃗N) = Eψ(r⃗1, r⃗2, ..., r⃗N). (2.7)

En mecánica clásica, si un sistema está compuesto por N partículas idénticas, es posible
distinguir cada partícula; sin embargo, en mecánica cuántica esto es imposible, ya que
para describir una partícula no podemos hacer más que especificar un conjunto completo
de observables que conmutan, y no existe un mecanismo para etiquetar partículas; además,
el principio de incertidumbre hace que el concepto de trayectoria pierda sentido, y aun si
la posición fuera completamente determinada a algún tiempo, es imposible especificar
cuál será su posición en el instante que sigue, por lo tanto, el concepto de distinguibilidad
pierde sentido en mecánica cuántica.

Consideremos un sistema de N partículas cuya función de onda es ψ(r⃗1, r⃗2, ..., r⃗N), si
estas partículas son mezcladas no hay forma de determinar cuál partícula tiene la coorde-
nada r1, o cuál tiene la coordenada r2 y así sucesivamente, de modo que la única medición
que se puede realizar es aquella que especifique la probabilidad de alguna partícula de es-
tar localizada en r1 otra en r2, hasta rN . Como resultado de esto, la probabilidad no debe
cambiar al intercambiar partículas, esto es, si cambiamos la partícula i con la partícula
j, esta densidad de probabilidad debe ser idéntica, por lo tanto, debe ser de la siguiente
forma [3]:

|Ψ(r⃗1, r⃗2, ..., r⃗i, ..., r⃗j, ..., r⃗N)|2 = |Ψ(r⃗1, r⃗2, ..., r⃗j, ..., r⃗i, ..., r⃗N)|2. (2.8)
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Por lo tanto, se tiene:

Ψ(r⃗1, r⃗2, ..., r⃗i, ..., r⃗j, ..., r⃗N) = ±Ψ(r⃗1, r⃗2, ..., r⃗j, ..., r⃗i, ..., r⃗N). (2.9)

Esto implica que la función de onda para un sistema de N partículas indistinguibles puede
ser simétrica o antisimétrica ante el intercambio de un par de partículas. Podría proponerse
una solución de la siguiente forma:

Ψ(r⃗1, r⃗2, ..., r⃗n) = ψ1(r⃗1)ψ2(r⃗2)...ψn(r⃗n). (2.10)

El problema con esta propuesta es que está considerando que se pueden etiquetar partí-
culas en este contexto haciéndolas distinguibles, pero eso no es posible ya que, como se
mencionó, en mecánica cuántica es imposible hacer esta distinción y además el producto
de estas funciones no necesariamente tiene definida una simetría, que es un requisito para
sistemas de N partículas cuyas funciones son simétricas o antisimétricas como ya se ha
mencionado. Para construir estas funciones, consideremos un sistema como el planteado
en este trabajo, es decir, un sistema de dos partículas indistinguibles, ya que para este caso
la función de onda simétrica y anti simétrica será:

Ψs(r⃗1, r⃗2) = 1√
2

[Ψ(r⃗1, r⃗2) + Ψ(r⃗2, r⃗1)] . (2.11)

Ψa(r⃗1, r⃗2) = 1√
2

[Ψ(r⃗1, r⃗2) − Ψ(r⃗2, r⃗1)] . (2.12)

Donde 1/
√

2 es un factor de normalización, y Ψ(r⃗1, r⃗2) se propone como una solución
separable Ψ(r⃗1, r⃗2) = ψ1(r⃗1)ψ2(r⃗2)), de modo que las funciones tanto simétrica como
antisimétrica serán:

Ψs(r⃗1, r⃗2) = 1√
2

[ψ1(r⃗1)ψ2(r⃗2) + ψ1(r⃗2)ψ2(r⃗1)] . (2.13)

Ψa(r⃗1, r⃗2) = 1√
2

[ψ1(r⃗1)ψ2(r⃗2) − ψ1(r⃗2)ψ2(r⃗1)] . (2.14)

Para el caso en que ambas partículas comparten el mismo estado cuántico la función de
onda simétrica está dada por Ψs(r⃗1, r⃗2) = ψn1(r⃗1)ψn2(r⃗2) y la función antisimétrica es
cero, en este caso existe una restricción en la función anti simétrica, esta restricción viene
del principio de exclusión de Pauli [12], ya que la función antisimétrica está asociada a
fermiones y estos obedecen este principio de exclusión. Esta construcción puede exten-
derse al caso de N partículas, pero dado el objetivo de este trabajo que es hacer el análisis
para dos partículas, esta construcción es más que suficiente.

2.3. Teoría de la información

La teoría de la información surge en la primera mitad del siglo XX; Claude Shannon sentó
las bases de esta teoría [11]. Se estudiaba cómo se transmite, procesa y almacena la infor-
mación en diversos sistemas de comunicación. El trabajo de Shannon introdujo conceptos
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esenciales como la entropía, definida como una medida cuantitativa de la incertidumbre.
La entropía de Shannon está definida de la siguiente forma:

S = −
∑

k

pk log pk. (2.15)

Donde pk es la distribución de probabilidad. Dada la interpretación probabilística de la
función de onda, es posible establecer una conexión entre ambas teorías [2]. Entonces,
podemos entender la entropía de Shannon como una medida de la incertidumbre asociada
al sistema o como una medida de localización si se trata de una distribución de probabili-
dad [1]. Es decir, la entropía de Shannon mide qué tan concentrada está dicha densidad en
una región del espacio. Una distribución “localizada” significa que casi toda la probabili-
dad se acumula en una zona pequeña, mientras que una “distribución deslocalizada” está
extendida en un área amplia.

El uso de la entropía en teoría de la información encaja perfectamente con la naturaleza
estadística de las mediciones en mecánica cuántica, por lo que lo único que se debe hacer
es insertar el conjunto de probabilidades obtenidas de la función de onda en la entropía de
Shannon.

Dado que el cuadrado de la función de onda representa una distribución de probabilidad
continua, es necesario definir la entropía para una distribución continua [3]:

S = −
∫ ∞

−∞
p(x) log p(x)dx. (2.16)

Donde p(x) es la distribución de probabilidad p(x) = |ψ(x)|2. Para un sistema de dos
partículas se considera la entropía conjunta, para el caso discreto, la entropía conjunta de
una pareja de variables discretas se define como:

S(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x). (2.17)

Donde p(x, y) es el cuadrado de la función de onda, ya sea simétrica o antisimétrica. De
forma similar al caso de una variable, la entropía conjunta para un conjunto de variables
aleatorias continuas, se define como: [4]

h(X1, X2, ..., Xn) = −
∫
f(xn)logf(xn)dxn. (2.18)

Para este sistema la entropía de pares será calculada de la siguiente forma: [1, 6]

S(x1, x2) = −
∫
ρ(x1, x2) ln ρ(x1, x2)dx1dx2. (2.19)

Donde ρ(x1, x2) es la densidad de probabilidad asociada al sistema. Igualmente es posible
definir una entropía relativa conjunta cuya distribución de referencia es el producto de las
marginales, definida como información mutua: [1]

Ix =
∫ ∫

ρ(x1, x2) ln ρ(x1, x2)
ρ(x1)ρ(x2)

dx1dx2. (2.20)

7 PROYECTO TERMINAL I
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Donde ρ(x1) y ρ(x2) se definen como las marginales de la distribución y es la distribución
de una variable aleatoria sin tener en cuenta las demás variables del sistema. Si x1 y x2
tienen una distribución conjunta, la marginal de x1 se obtiene integrando sobre x2:

ρ(x1) =
∫
ρ(x1, x2)dx2. (2.21)

Esta cantidad responde a la pregunta ¿cuál es la probabilidad de que x1 = x sin importar el
valor de x2. Dado que es una distribución de probabilidad, debe cumplir con la propiedad
de normalización. De igual forma puede calcularse otra medida de correlación estadística
entre las variables de este sistema, y esa es el coeficiente de correlación de Pearson [1],
que detecta correlación lineal entre variables continuas.

τ = ⟨x1x2⟩ − ⟨x1⟩⟨x2⟩√
⟨x2

1⟩ − ⟨x1⟩2
√

⟨x2
2⟩ − ⟨x2

2⟩
. (2.22)

Cuyo rango de valores está entre ±1, siendo +1 una correlación lineal positiva, indicando
que si una variable aumenta la otra aumenta en proporción constante, si el coeficiente es
−1 tendremos una correlación lineal negativa, a medida que una variable aumenta la otra
disminuye, si τ = 0 esto indica que no existe correlación lineal, es decir, podría no existir
correlación entre ninguna de las variables o en su defecto el tipo de correlación entre las
variables puede no ser lineal. Esta correlación puede ser interpretada como una medida
de la separabilidad del sistema ya que si la descripción de un sistema requiere de dos (o
más) variables, se dice que estas están estadísticamente correlacionadas si su función de
distribución no puede separarse como producto de cada una de ellas [5].

8 PROYECTO TERMINAL I



3 SOLUCIÓN PARA UNA PARTÍCULA

3. Solución para una partícula

Una vez dado el contexto y los fundamentos teóricos del trabajo, se procede a explicar el
planteamiento del problema para una partícula y, posteriormente, hacer la transición a dos
partículas.

Se tiene una partícula confinada en la siguiente región de potencial.

π
2 − b

2
π
2 + b

2
π

V0

∞ ∞

x

V (x)

Figura 1: Doble pozo cuadrado de potencial de paredes infinitas y longitud π centrado en
π
2 con una barrera de ancho b y alto V0.

Cuyas regiones son las siguientes:

V (x) =


∞, x ≤ 0 o x ≥ π,

0, 0 < x < π
2 − b

2 ,

V0,
π
2 − b

2 ≤ x ≤ π
2 + b

2 ,

0, π
2 + b

2 < x < π.

(3.1)

Su descripción está dada por la ecuación de Schrödinger.

− ℏ2

2m
d2ψ(x)
dx2 + V (x)ψ(x) = Enψ(x). (3.2)

Dividimos este problema en tres regiones de interés.

V (x) =


0, 0 < x < π

2 − b
2 ,

V0,
π
2 − b

2 ≤ x ≤ π
2 + b

2 ,

0, π
2 + b

2 < x < π.

(3.3)

Se considerarán unidades atómicas, es decir, ℏ = 1 y m = 1, y para las cuales la ecuación
de Schrödinger tiene la siguiente forma.

Para la primera región:

−1
2
d2ψ1(x)
dx2 = Enψ1(x). (3.4)

9 PROYECTO TERMINAL I



3 SOLUCIÓN PARA UNA PARTÍCULA

Transformando la ecuación se obtiene:

d2ψ1(x)
dx2 + 2Enψ1(x) = 0. (3.5)

Es claro que es una ecuación de oscilador armónico, y proponemos la solución de la
forma:

ψ1(x) = eλnx. (3.6)

Se define entonces λn

λ2
n = 2En.

La propuesta de solución hecha dará una solución en términos de senos y cosenos.

ψ1(x) = A sin λnx+B cosλnx. (3.7)

Para la segunda región:

−1
2
d2ψ2(x)
dx2 + V0ψ2(x) = Enψ2(x). (3.8)

d2ψ2(x)
dx2 − 2(V0 − En)ψ2(x) = 0. (3.9)

Se define κ en términos de λ como:

κ2
n = 2V0 − λ2

n.

Para regiones en las que la energía del sistema sea menor que la barrera de potencial
(E < V0) se tendrán soluciones reales.

ψ2(x) = eκnx. (3.10)

Cuyas soluciones serán:

ψ2(x) = C sinh κnx+D cosh κnx. (3.11)

Para la tercera región, las soluciones serán muy parecidas a las obtenidas en la primera
región.

−1
2
d2ψ3(x)
dx2 = Enψ3(x). (3.12)

ψ1(x) = A sin λn(π − x) +B cosλn(π − x). (3.13)

Por lo tanto, el conjunto de soluciones para cada región del espacio es el siguiente:

ψ(x) =


A sin λnx+B cosλnx, 0 < x < π

2 − b
2 ,

C sinh κnx+D cosh κnx,
π
2 − b

2 ≤ x ≤ π
2 + b

2 ,

A sin λnx+B cosλnx,
π
2 + b

2 < x < π.

(3.14)

Es necesario analizar la forma de la función en las distintas regiones poniendo ciertas
condiciones de frontera y, a partir de aquí, determinar las constantes y los valores propios,
es decir, las energías. Así mismo, se debe considerar la paridad de la función de onda,
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ya que esta dará posteriormente los estados energéticos de la función. Para estados con
número cuántico n = 2l − 1 se asociarán estados pares de la función de onda, y para
estados con número cuántico n = 2l se asociarán estados impares de la función de onda,
i.e., para soluciones pares consideraremos soluciones en la región central asociadas al co-
seno hiperbólico, y para soluciones impares serán aquellas asociadas al seno hiperbólico.
De igual manera se obtendrán dos conjuntos de soluciones asociadas a las constantes de
normalización, un conjunto para las regiones pares, y otro para las impares. Se comenzará
haciendo el análisis para la región par.

En x = 0 se debe cumplir que

ψ1(0) = 0. (3.15)

Evaluando la función:

ψ1(0) = A sin λn0 +B cosλn0 = 0. (3.16)

Resultando así que B = 0, entonces ψ1(x) = A1 sin λnx.

Para la segunda región, la función de onda será:

ψ2(x) = D cosh κnx. (3.17)

La solución en esta región debe estar centrada en π
2 de modo que al evaluarla en el centro,

esta se anule, por lo que ψ2 es:

ψ2(x) = D cosh κn

(
x− π

2

)
. (3.18)

En x = π debe cumplirse que la función de onda debe anularse, ψ3(π) = 0

ψ3(π) = A sin λnπ +B cosλnπ. (3.19)

Esto tiene un grave problema ya que la condición para que esto se anule está completa-
mente en λn, por lo que es necesario escribir la función de onda de tal forma que en ese
intervalo al llegar a π se anule, por lo tanto, la función tendría la siguiente forma:

ψ3(x) = A sin λn(π − x) +B cosλn(π − x). (3.20)

De esta forma, si evaluamos la función de onda en π

ψ3(π) = A sin λn0 +B cosλn0. (3.21)

Por lo que para esta región B también es cero, entonces

ψ3(x) = A1 sin λn(π − x). (3.22)

Por lo tanto, el conjunto de soluciones para la región par es:

ψ(x, λn) =


A1 sin λnx, 0 < x < π

2 − b
2 ,

D cosh κn(x− π
2 ), π

2 − b
2 ≤ x ≤ π

2 + b
2 ,

A1 sin λn(π − x), π
2 + b

2 < x < π.

(3.23)
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Se debe garantizar la continuidad de la función de onda en todas las regiones del pozo de
potencial; por lo tanto, es necesario considerar las siguientes condiciones de continuidad:

ψ1

(
π

2 − b

2

)
= ψ2

(
π

2 − b

2

)
, (3.24)

ψ2

(
π

2 + b

2

)
= ψ3

(
π

2 + b

2

)
, (3.25)

ψ′
1

(
π

2 − b

2

)
= ψ′

2

(
π

2 − b

2

)
, (3.26)

ψ′
2

(
π

2 + b

2

)
= ψ′

3

(
π

2 + b

2

)
. (3.27)

De la primera condición se obtiene:

A1 sin λn

(
π − b

2

)
= D cosh κn

b

2 . (3.28)

De la segunda condición se obtiene:

A1 sin λn

(
π − b

2

)
= D cosh κn

b

2 . (3.29)

Y es obvio que se obtiene la misma ecuación que en el primer intervalo, por lo que hay
que considerar la continuidad de las derivadas de la función de onda:

A1λn cosλn

(
π − b

2

)
= −Dκn sinh κn

b

2 . (3.30)

Para la última región:

A1λn cosλn

(
π − b

2

)
= −Dκn sinh κn

b

2 . (3.31)

Se obtiene la misma ecuación, por lo que haciendo el cociente entre las ecuaciones 3.29
y 3.31, obtenemos una ecuación trascendental para determinar λn.

λn cotλn

(
π − b

2

)
= −κn tanh κn

b

2 . (3.32)

Cuya solución debe ser determinada de forma numérica. Estas soluciones para λ corres-
ponden a los niveles energéticos. Como es bien sabido, la función de onda por su in-
terpretación estadística como densidad de probabilidad, debe cumplir con la siguiente
condición: ∫ ∞

−∞
|ψ(x)|2dx = 1. (3.33)

Es decir, esta función debe estar normalizada. Por lo que la condición de normalización
para esta solución es la siguiente:
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∫ π−b
2

0
(A1 sin λnx)2dx+

∫ π+b
2

π−b
2

(D cosh κn(x− π

2 ))2dx+
∫ π

π+b
2

(A1 sin λn(π − x))2dx = 1.
(3.34)

Teniendo entonces un sistema de 2 ecuaciones para dos variables, A1 y D, que son las
respectivas constantes de normalización que serán función del potencial V0, de b y de λ,
cuya expresión completa está en el apéndice A.

Pasando ahora al caso impar, en la región central se tendrá una función −C sinh κn(π
2 − x),

y en la tercera región habrá un cambio de signo, es decir, tendremos −A2 sin λn(x− π)
así como las siguientes condiciones de frontera y las respectivas constantes de normaliza-
ción:

ψ1

(
π

2 − b

2

)
= ψ2

(
π

2 − b

2

)
, (3.35)

ψ2

(
π

2 + b

2

)
= ψ3

(
π

2 + b

2

)
, (3.36)

ψ′
1

(
π

2 − b

2

)
= ψ′

2

(
π

2 − b

2

)
, (3.37)

ψ′
2

(
π

2 + b

2

)
= ψ′

3

(
π

2 + b

2

)
. (3.38)

∫ π−b
2

0
(A2 sin λnx)2dx+

∫ π+b
2

π−b
2

(C sinh κn

(
π

2 − x
)

)2dx+
∫ π

π+b
2

(A2 sin λn(x− π))2dx = 1.
(3.39)

De las condiciones de continuidad obtendremos las siguientes ecuaciones:

A2 sin λn

(
π − b

2

)
= C sinh κn

b

2 . (3.40)

De la segunda condición se obtiene:

A2 sin λn

(
π − b

2

)
= C sinh κn

b

2 . (3.41)

De la tercera y cuarta condición se tiene:

A2λn cosλn

(
π − b

2

)
= −Cκn cosh κn

b

2 . (3.42)

Dando entonces un sistema de 2 ecuaciones para dos variables,A2 yC, que son las respec-
tivas constantes de normalización para funciones impares que serán función del potencial
V0, de b y de λn, cuya expresión completa está expresada en el apéndice A. Ahora, si se
dividen estas dos ecuaciones se obtiene la siguiente ecuación trascendental:

λn cotλn

(
π − b

2

)
= −κn coth κn

b

2 . (3.43)
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Que es crucial para encontrar las respectivas raíces para las soluciones impares. De modo
que el conjunto de soluciones para esta región es el siguiente:

ψ(x, λn) =


A2 sin λnx, 0 < x < π

2 − b
2 ,

−C sinh κn

(
x− π

2

)
, π

2 − b
2 ≤ x ≤ π

2 + b
2 ,

A2 sin λn(π − x), π
2 + b

2 < x < π.

(3.44)

Una vez hecho este análisis es posible dar la función de onda, para este trabajo se con-
sideraron 4 números cuánticos, es decir, 4 niveles energéticos dentro de este sistema de
doble pozo infinito, consideraremos que n va de 1 a 4, por lo tanto las funciones de onda
para cada uno de estos valores están graficadas en la Fig. 2 a la Fig. 5. Los estados se
clasifican por su paridad: los valores n = 2l−1 corresponden a funciones de onda pares y
los valores n = 2l a funciones impares. El estado fundamental (n = 1) no muestra ningún
nodo (Fig. 2), el primer excitado (n = 2) presenta un nodo en el centro y lóbulos de signo
opuesto a ambos lados (Fig. 3), el segundo excitado (n = 3) recobra la simetría par con
dos nodos dentro de los pozos y un mayor número de oscilaciones (Fig. 4), y el tercer
excitado (Fig. 5) muestra tres nodos, es decir, para cada estado se tienen n− 1 nodos.

Figura 2: Función de onda para n = 1, V0 = 5, b = 1.
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Figura 3: Función de onda para n = 2, V0 = 5, b = 1.

Figura 4: Función de onda para n = 3, V0 = 5, b = 1.
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Figura 5: Función de onda para n = 4, V0 = 5, b = 1.

Estas funciones de onda en comparación con las funciones de onda de una partícula en
un pozo cuadrado de potencial poseen una diferencia en la simetría y estructura. Para un
pozo cuadrado (V0 = 0 y b = 0) las funciones de onda tienen una forma senoidal, en este
caso al observar la Fig. 2 vemos en la región central se tiene un pequeño valle, esta región
está asociada al escalón de potencial y este pequeño valle es originado por un fenómeno
de tunelamiento [17, 18], es una región en la que la probabilidad de encontrar la partícula
en la región del escalón, mientras que en el pozo cuadrado las funciones de onda están
distribuidas en una región como podemos ver a continuación en la Fig. 6 a la Fig. 9. Para
n = 1 la función de onda presenta un solo lóbulo sin nodos internos (Fig. 6); para n = 2
aparece un nodo en el centro y dos lóbulos de signo opuesto (Fig. 7); para n = 3 hay
dos nodos internos y tres lóbulos alternados (Fig. 8); y para n = 4 se observan tres nodos
internos con cuatro lóbulos (Fig. 9). Cada función de onda tiene al igual que en el doble
pozo cuadrado n− 1 nodos y su forma refleja el incremento en energía y en el número de
oscilaciones con n, es decir a mayor nivel energético En mayor cantidad de oscilaciones.
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Figura 6: Función de onda en un pozo cuadrado para n = 1, V0 = 0, b = 0.

Figura 7: Función de onda en un pozo cuadrado para n = 2, V0 = 0, b = 0.

17 PROYECTO TERMINAL I



3.1 Solución para dos partículas 3 SOLUCIÓN PARA UNA PARTÍCULA

Figura 8: Función de onda en un pozo cuadrado para n = 3, V0 = 0, b = 0.

Figura 9: Función de onda en un pozo cuadrado para n = 4, V0 = 0, b = 0.

3.1. Solución para dos partículas

En este punto se puede pasar a explicar la metodología para el sistema de dos partículas
indistinguibles no interactuantes. Como ya se mencionó, para hacer el análisis de este tipo
de sistemas se puede partir de las soluciones construidas para una partícula, de modo que
puede construirse la función de onda para dos partículas de la siguiente forma:

Ψ+(x1, x2) = 1√
2

[Ψ(x1, x2) + Ψ(x2, x1)]. (3.45)
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Ψ−(x1, x2) = 1√
2

[Ψ(x1, x2) − Ψ(x2, x1)]. (3.46)

Donde Ψ+(x1, x2) y Ψ−(x1, x2) representan las funciones simétrica y antisimétrica res-
pectivamente, donde Ψ(x1, x2) es el producto de las funciones de onda de cada partícula
ψ1(x1)ψ2(x2), y Ψ(x2, x1) es el producto de las funciones de onda de cada partícula al
intercambiar las posiciones de cada una, es decir ψ1(x2)ψ2(x1). Una vez obtenidas estas
funciones de onda, es posible hacer el análisis de las respectivas cantidades de interés del
sistema, tales como la entropía de Shannon para la densidad de pares, la entropía de Shan-
non para las marginales, la información mutua, el coeficiente de correlación de Pearson, y
la varianza. Estas cantidades se construyen de la siguiente manera: como ya se mencionó,
la entropía de Shannon es una medida de la incertidumbre o de localización de la densidad
de probabilidad, es decir, mide qué tan acumulada está la densidad de probabilidad en una
región del espacio, si una densidad de probabilidad está deslocalizada, quiere decir que
las probabilidades están más distribuidas en el espacio, si está localizada quiere decir que
esta está concentrada en alguna región del espacio, es importante recordar que la función
de onda tiene una interpretación probabilística, por lo que la conexión es bastante directa,
esta entropía para nuestro caso puede ser calculada de la siguiente manera:

Sx1,x2 = −
∫ π

0

∫ π

0
|Ψ±(x1, x2)|2 ln |Ψ±(x1, x2)|2dx1dx2. (3.47)

Esto permitirá analizar la localización o deslocalización de la densidad de pares del siste-
ma. De igual forma se puede definir la densidad reducida para calcular la entropía de las
densidades reducidas para así comparar ambas densidades de probabilidad. Se define la
densidad reducida o marginal como:

ρ(x1,2) =
∫ π

0
|Ψ±(x1, x2)|2dx1,2. (3.48)

Estas densidades reducidas son iguales para las densidades simétrica y antisimétrica dada
la ortonormalidad de las funciones de onda y es algo que solo ocurre en sistemas de
partículas no interactuantes como el que se está planteando. Una vez definido esto, puede
calcularse la entropía de Shannon para esta distribución.

Sx1 = −
∫ π

0
ρ(x1) ln ρ(x1)dx1. (3.49)

Como ya se mencionó, la información mutua se define como una entropía relativa entre
distribuciones de más de una variable. para este problema esta se calcula de la siguiente
forma:

Ix =
∫ ∫

|Ψ(x1, x2)|2 ln |Ψ(x1, x2)|2
ρ(x1)ρ(x2)

dx1dx2 = 2Sx1 − Sx1,x2 . (3.50)

El coeficiente de correlación para este sistema se construye de la siguiente manera:

τ = ⟨x1x2⟩ − ⟨x1⟩⟨x2⟩√
⟨x2

1⟩ − ⟨x1⟩2
√

⟨x2
2⟩ − ⟨x2⟩2

. (3.51)

Donde los valores esperados se calculan de la siguiente forma:

⟨x1x2⟩ =
∫ π

0

∫ π

0
x1x2|Ψ±(x1, x2)|2dx1dx2. (3.52)

19 PROYECTO TERMINAL I



3.1 Solución para dos partículas 3 SOLUCIÓN PARA UNA PARTÍCULA

⟨x1,2⟩ =
∫ π

0
x1,2ρ(x1,2)dx1,2. (3.53)

Es necesario precisar que esto es lo mismo que haber hecho la siguiente integral:

⟨x1⟩ =
∫ π

0

∫ π

0
x1|Ψ±(x1, x2)|2dx1dx2. (3.54)

Ya que si se realiza la integración sobre x2 se obtiene la distribución marginal sobre x1,
entonces cualquiera de las dos formas de escritura para el valor esperado de una sola de
las variables de posición es válida (ecuación 3.53 o 3.54). Los términos en el denominador
de la ecuación 3.51 son la desviación estándar de la distribución.
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4. Variaciones del ancho del potencial

Comencemos el análisis con las entropías de Shannon para variaciones del ancho de la
barrera de potencial para distintos valores del escalón en la Fig. 10. Se tomaron cuatro
estados del sistema, n1 = 1 y n2 = 2; n1 = 1 y n2 = 3; n1 = 2 y n2 = 3; n1 = 2
y n2 = 4; así como 4 distintos valores del alto del escalón de potencial, V = 1, V =
5, V = 10, V = 20, para cada una de las gráficas, se calcularon 20 puntos ya que el costo
computacional se elevaba al intentar calcular más puntos, partiendo de b = 0.001 hasta
b = π/20.

Al hacer el cálculo de las entropías para la densidad de pares se observa que para estados
n1 = 1 y n2 = 2; n1 = 2 y n2 = 3 el comportamiento de la entropía de ambas densida-
des tanto simétrica como anti simétrica es igual, los estados restantes (n1 = 1 y n2 = 3;
n1 = 2 y n2 = 4.) presentan un comportamiento distinto en ambas densidades, aunque
en regiones parecen tocarse, en la mayoría de los casos es distinta y presenta mayor des-
localización la densidad anti simétrica. Esto puede explicarse pensando en la restricción
ya mencionada en funciones anti simétricas, dando una restistricción sobre la densidad de
probabilidad, haciendo que la probabilidad de encontrar a las dos partículas en el mismo
punto es cero y la probabilidad de encontrarlas cerca es muy pequeña, teniendo efecto en
la localización de la densidad de pares ya que en promedio el espacio disponible para la
otra partícula es menor, generando cierta clase de repulsión entre ellas a pesar de ser no
interactuantes.

Esto lleva a pensar que en los casos con n1 = 1 y n2 = 2; n1 = 2 y n2 = 3 dado que la
función simétrica está igualmente localizada que la antisimétrica, debe tener un hueco. En
los casos límite, se observa que se recupera el valor de dos partículas libres en una caja,
esto se observa en el valor de la entropía en estos casos, ya que se obtiene el mismo valor
de entropía en ambos límites. De igual forma se observa que en cada gráfica se presentan
máximos y mínimos, como ya se ha mencionado, la entropía de Shannon es una medida
de la localización o deslocalización de una densidad de probabilidad, en estos casos se
observa como al aumentar el ancho de la barrera de potencial, se tiene un fenómeno de
localización (disminución de entropía) o deslocalización (aumento de entropía).
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Figura 10: Entropía de Shannon vs ancho de la barrera, curva roja: densidad simétrica,
curva azul: densidad antisimétrica, primera columna n1 = 1 y n2 = 2, segunda columna
n1 = 1 y n2 = 3, tercera columna n1 = 2 y n2 = 3, cuarta columna n1 = 2 y n2 = 4,
V = 1 en la primera fila, V = 5 en la segunda fila, V = 10 en la tercera fila, y V = 20 en
la última fila.

Analizando la primera columna de la Fig.10 para el estado n1 = 1 y n2 = 2 al aumentar
el ancho del escalón se observa que las densidades se localizan y el mínimo a partir del
cual se empiezan a deslocalizar depende del valor de V , ya que al aumentar este valor, la
densidad se deslocaliza a mayores valores de b, viendo las densidades de pares para estos
estados.
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Figura 11: Densidad de la función de onda de dos partículas para el estado n1 = 1 y
n2 = 2, V = 5 al cambiar el ancho de la barrera de potencial marcado por las líneas
blancas.

Se observa en la Fig. 11 cómo al aumentar el ancho de la barrera de potencial (b) la
densidad de la función de onda se localiza en los extremos del doble pozo. El cambio en
este ancho puede verse en las lineas blancas en las figuras de las densidades, ya que estas
líneas blancas representan los límites de la barrera de potencial.

Al analizar la segunda columna de la Fig. 10 (estado n1 = 1 y n2 = 3), la densidad
simétrica se presenta mayor deslocalización mientras la densidad antisimétrica presenta
menores valores de entropía indicando así menor deslocalización. Al realizar aumentos en
el alto del escalón de potencial, se observa que las entropías de ambas funciones tienden a
acercarse más, al grado que para V = 20 las curvas en una cierta región son muy cercanas.
La Fig. 12 muestra la densidad de onda simétrica para el estado n1 = 1 y n2 = 3 para
distintos valores del ancho de la barrera de potencial, es notable como la densidad de la
función de onda simétrica se deslocaliza conforme aumenta el valor del ancho del escalón,
comportamiento que se refleja en el análisis de la segunda columna de las gráficas de la
entropía de la densidad de pares.

23 PROYECTO TERMINAL I



4 VARIACIONES DEL ANCHO DEL POTENCIAL

Figura 12: Densidad de la función de onda simétrica de dos partículas para el estado
n1 = 1, n2 = 3 y V = 5 al cambiar el ancho de la barrera de potencial marcado por las
líneas blancas.

Si ahora se observa la densidad antisimétrica en la Fig. 13, se nota que en términos gene-
rales, la deslocalización que experimenta esta función es menor. Ahora resulta interesan-
te ver para ese estado el comportamiento de la densidad simétrica y anti simétrica para
V = 20 en la Fig.14 y Fig.15 ya que en una región en la que 0.16 < b < 1.10 la entropía
toma los mismos valores para ambas funciones.

Figura 13: Densidad de la función de onda antisimétrica de dos partículas para el estado
n1 = 1, n2 = 3 y V = 5 al cambiar el ancho de la barrera de potencial marcado por las
líneas blancas.
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Figura 14: Densidad de la función de onda simétrica de dos partículas para el estado
n1 = 1, n2 = 3 y V = 20 al cambiar el ancho de la barrera de potencial marcado por las
líneas blancas.

Figura 15: Densidad de la función de onda antisimétrica de dos partículas para el estado
n1 = 1, n2 = 3 y V = 20al cambiar el ancho de la barrera de potencial marcado por las
líneas blancas.

Ambas funciones de onda tienen comportamientos similares en esa región del espacio del
doble pozo, dando así lugar a que la entropía de ambas tome el mismo valor. Para el estado
n1 = 2, n2 = 3 (tercera columna de la Fig. 10) como ya se mencionó tanto la densidad
simétrica como anti simétrica presentan el mismo comportamiento, pero parece ser que
el número de máximos y mínimos de la entropía aumentan conforme V aumenta, para
corroborar esto resulta importante visualizar las densidades de pares tanto simétrica como
antisimétrica para los distintos valores de V en los cuales se encuentran esos máximos y
mínimos. Para el primer valor de V en la Fig. 16 y Fig. 17.
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Figura 16: Deslocalización de la densidad de la función de onda simétrica de dos partícu-
las para el estado n1 = 2, n2 = 3 y V = 1 al cambiar el ancho de la barrera de potencial
marcado por las líneas blancas.

Figura 17: Deslocalización de la densidad de la función de onda antisimétrica de dos
partículas para el estado n1 = 2, n2 = 3 y V = 1 al cambiar el ancho de la barrera de
potencial marcado por las líneas blancas.

Para la Fig. 16 y Fig. 17 dado que el alto del escalón es pequeño, el cambio en la localiza-
ción de densidad es muy pequeño, por lo que la localización puede parecer imperceptible.
Si ahora visualizamos este cambio con mayores valores del alto del escalón, la localiza-
ción o deslocalización serán más evidentes, esto se refleja en la Fig. 18 a Fig. 21 en la que
es notable el cambio en la localización de la densidad de la función de onda, ya que al
aumentar el ancho del escalón es evidente que esta densidad se deslocaliza.
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Figura 18: Deslocalización de la densidad de la función de onda simétrica de dos partícu-
las para el estado n1 = 2, n2 = 3 y V = 5 al cambiar el ancho de la barrera de potencial
marcado por las líneas blancas.

Figura 19: Deslocalización de la densidad de la función de onda antisimétrica de dos
partículas para el estado n1 = 2, n2 = 3 y V = 5 al cambiar el ancho de la barrera de
potencial marcado por las líneas blancas.
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Figura 20: Deslocalización de la densidad de la función de onda simétrica de dos partícu-
las para el estado n1 = 2, n2 = 3 y V = 10 al cambiar el ancho de la barrera de potencial
marcado por las líneas blancas.

Figura 21: Deslocalización de la densidad de la función de onda antisimétrica de dos
partículas para el estado n1 = 2, n2 = 3 y V = 10 al cambiar el ancho de la barrera de
potencial marcado por las líneas blancas.

Ahora hay que observar cómo ocurre la localización de estos estados. En la Fig.22 a la
Fig.25 podemos observar la localización de ambas densidades de la función de onda tanto
simétrica como antisimétrica para un valor fijo de V = 5 en la Fig.22 y la Fig.23 y para
un valor fijo de V = 10 en la Fig.24 y la Fig.25.
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Figura 22: Localización de la densidad de la función de onda simétrica de dos partículas
para el estado n1 = 2, n2 = 3 y V = 5 al cambiar el ancho de la barrera de potencial
marcado por las líneas blancas.

Figura 23: Localización de la densidad de la función de onda antisimétrica de dos partícu-
las para el estado n1 = 2, n2 = 3 y V = 5 al cambiar el ancho de la barrera de potencial
marcado por las líneas blancas.
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Figura 24: Localización de la densidad de la función onda simétrica de dos partículas
para el estado n1 = 2, n2 = 3 y V = 10 al cambiar el ancho de la barrera de potencial
marcadas por las líneas blancas.

Figura 25: Localización de la densidad de la función de onda antisimétrica de dos partícu-
las para el estado n1 = 2, n2 = 3 y V = 10 al cambiar el ancho de la barrera de potencial
marcado por las líneas blancas.

En estas figuras (Fig.22 a la Fig.25) se observa que el comportamiento de la densidad
de la función de onda, tanto simétrica como antisimétrica es consistente con lo reflejado
en la entropía de Shannon, aunque es pertinente aclarar los picos de la entropía, como
ya se hizo mención, estos se tomaron 20 puntos para realizar estas gráficas ya que el
costo computacional aumentaba muchísimo, de modo que estos picos pueden deberse a
la falta de valores para graficar, ya que 20 puntos podrían no ser suficientes para suavizar
estas gráficas, de igual forma, estos podrían deberse a errores numéricos generados por
Mathematica, ya que como se mencionó, el costo computacional aumenta bastante debido
a que el cálculo de las entropías de Shannon es bastante costoso, por lo que esto podría
inducir errores pequeños en los cálculos llevando a tener picos en la localización o en la
deslocalización de la función de onda pudiendo no reflejar el comportamiento en ciertos
estados, como puede ser el estado n1 = 2, n2 = 4 que se discute a continuación.
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Para el estado n1 = 2, n2 = 4 graficado en la Fig. 26 a la Fig. 29 se observa que el
comportamiento es muy similar en ambas entropías, de modo que se puede pensar que
son similares las densidades, el problema es que al aumentar el ancho del escalón de
potencial y hacerlo tender al caso límite en que b = π, se debe recuperar el sistema de 2
partículas libres no interactuantes en una caja, es decir, los valores de entropía en b ∼ 0 y
b ∼ π deberían ser los mismos o muy cercanos, pero esto no ocurre y posiblemente esto
debe a errores numéricos generados por los métodos para calcular la entropía de Shannon
como ya se mencionó, si bien la densidad de la función de onda tanto simétrica como
antisimétrica no presentan irregularidades, el cálculo de la entropía de Shannon refleja
estos errores numéricos. En la Fig. 26 y Fig. 27 están graficadas las densidades de la
función de onda para V = 1 y tal como en los casos anteriores el valor del alto del escalón
no es el suficiente para mostrar un comportamiento de localización o deslocalización, pero
es algo que no se ve reflejado en la primera gráfica de la cuarta columna de la Fig. 10,
de modo que podemos decir que existen ciertos errores numéricos asociados al cálculo de
la entropía de Shannon. Para casos en que el alto de la barrera de potencial es mayor, es
más notable el efecto de localización de las densidades de pares, para esto, en la Fig. 28
y Fig. 29 se grafican las densidades de la función de onda para V = 10 para así poder
visualizar el comportamiento ya mencionado.
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Figura 26: Densidad de la función de onda simétrica de dos partículas para el estado
n1 = 2, n2 = 4 y V = 1 al cambiar el ancho de la barrera de potencial marcado por las
líneas blancas.

Figura 27: Densidad de la función de onda antisimétrica de dos partículas para el estado
n1 = 2, n2 = 4 y V = 1 al cambiar el ancho de la barrera de potencial marcado por las
líneas blancas.

32 PROYECTO TERMINAL I



4.1 Densidad reducida 4 VARIACIONES DEL ANCHO DEL POTENCIAL

Figura 28: Densidad de la función de onda simétrica de dos partículas para el estado
n1 = 2, n2 = 4 y V = 10 al cambiar el ancho de la barrera de potencial marcado por las
líneas blancas.

Figura 29: Densidad de la función de onda antisimétrica de dos partículas para el estado
n1 = 2, n2 = 4 y V = 10 al cambiar el ancho de la barrera de potencial marcado por las
líneas blancas.

4.1. Densidad reducida

En la Fig. 30 se tiene una gráfica de las entropías de las densidades reducidas para cada
una de las funciones de onda y para las variaciones del ancho del potencial.
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Figura 30: Entropía de las densidades reducidas vs ancho de la barrera, primera columna
n1 = 1 y n2 = 2, segunda columna n1 = 1 y n2 = 3, tercera columna n1 = 2 y n2 = 3,
cuarta columna n1 = 2 y n2 = 4, V = 1 en la primera fila, V = 5 en la segunda fila,
V = 10 en la tercera fila, y V = 20 en la última fila.

Estas densidades reducidas para funciones simétricas y antisimétricas son iguales debido a
las propiedades de ortonormalidad de las funciones de una partícula. Esto solo es posible
en sistemas no interactuantes. Si se observa la primera columna el comportamiento es
parecido al de las densidades de pares. Una pregunta natural que puede surgir de ver
el comportamiento tanto de la densidad de pares como de la densidad reducida, es si
comparten los máximos y los mínimos, para esto hay que ver las gráficas para cada uno
de los casos.

Figura 31: Entropía de la densidad de pares (curva azul) y de la densidad reducida (curva
roja) n1 = 1, n2 = 2 y V = 1.

Para el caso presentado en la Fig.31, parece ser que comparten solo el máximo de la curva,
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y el mínimo en el caso de la densidad de pares está desplazado a un valor ligeramente
mayor de b. Pasando al caso para V = 5 en la Fig. 32, es notable que tanto los máximos
como los mínimos de la función entropía tanto para las densidades de pares como la
densidad reducida, son los mismos. Este comportamiento se repite para los demás valores
del alto del escalón de potencial (Fig. 33 y Fig. 34).

Figura 32: Entropía de la densidad de pares (curva azul) y de la densidad reducida (curva
roja) n1 = 1, n2 = 2 y V = 5.

Figura 33: Entropía de la densidad de pares (curva azul) y de la densidad reducida (curva
roja) n1 = 1, n2 = 2 y V = 10.

Figura 34: Entropía de la densidad de pares (curva azul) y de la densidad reducida (curva
roja) del estado n1 = 1, n2 = 2 y V = 20.

35 PROYECTO TERMINAL I



4.1 Densidad reducida 4 VARIACIONES DEL ANCHO DEL POTENCIAL

Para el estado n1 = 1, n2 = 3, a simple vista parece ser que el comportamiento de las
densidades de pares difiere de la densidad reducida (Fig. 35), pero al aumentar la escala
de visualización, la densidad de pares antisimétrica tiene comportamiento similar a la
densidad reducida, que si bien no comparte los máximos ni los mínimos, estos tienden a
ocurrir en valores similares de b, Fig. 36. En la Fig. 37 se observa la localización de la
función de onda al rededor de valores de 0.78 ≤ b ≤ 1.73.

Figura 35: Entropía de la densidad de pares (curva azul) y de la densidad reducida (curva
roja) del estado n1 = 1, n2 = 3 y V = 1.

Figura 36: Entropía de la densidad de pares anti simétrica (curva azul) y de la densidad
reducida (curva roja) del estado n1 = 1, n2 = 3 y V = 1.

Figura 37: Entropía de la densidad de pares (curva azul) y de la densidad reducida (curva
roja) del estado n1 = 1, n2 = 3 y V = 5.
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Figura 38: Entropía de la densidad de pares anti simétrica (curva azul) y de la densidad
reducida (curva roja) del estado n1 = 1, n2 = 3 y V = 5.

Figura 39: Localización de la densidad de onda anti simétrica de dos partículas para el
estado n1 = 2, n2 = 3 y V = 5 para valores 0.78 ≤ b ≤ 1.73.

Se observa que el comportamiento de la función de onda es consistente con lo reflejado
en la entropía de Shannon, para casos en que V = 10, V = 20 pasa algo similar, el
comportamiento de la entropía reducida es similar al observado para la densidad de pares
antisimétrica.

37 PROYECTO TERMINAL I



4.1 Densidad reducida 4 VARIACIONES DEL ANCHO DEL POTENCIAL

Figura 40: Entropía de la densidad de pares anti simétrica (curva azul) y de la densidad
reducida (curva roja) del estado n1 = 1, n2 = 3 y V = 10.

Figura 41: Entropía de la densidad de pares anti simétrica (curva azul) y de la densidad
reducida (curva roja) del estado n1 = 1, n2 = 3 y V = 20.

Pasando al siguiente estado n1 = 2, n2 = 3 cuyas entropías se encuentran en la Fig.42 a
la Fig.45 se observa lo mismo que en el caso n1 = 1, n2 = 2, es decir, el comportamiento
de la entropía de la densidad de pares tanto simétrica como antisimétrica es análogo al
comportamiento de la densidad reducida, esto se refleja en las siguientes gráficas, además
los máximos y mínimos se encuentran en los mismos puntos. Es necesario recordar
que los picos presentados en las gráficas están inducidos por la cantidad de puntos
tomados para hacer el análisis.

Figura 42: Entropía de la densidad de pares y reducida del estado n1 = 2, n2 = 3 y V = 1.
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Figura 43: Entropía de la densidad de pares y reducida del estado n1 = 2, n2 = 3 y V = 5.

Figura 44: Entropía de la densidad de pares y reducida del estado n1 = 2, n2 = 3 y
V = 10.

Figura 45: Entropía de la densidad de pares y reducida del estado n1 = 2, n2 = 3 y
V = 20.

Para el estado n1 = 2, n2 = 4 como ya se mencionó, existen ciertos problemas numéricos
derivados del cálculo de la entropía en los últimos valores de b, de modo que las siguientes
gráficas presentadas de la entropía de pares simétrica y antisimétrica están recortadas (Fig.
46 a la Fig. 49) de modo que no se muestran los problemas numéricos asociados a este
estado y a esos respectivos valores del ancho del escalón de potencial, pero el comporta-
miento de estas densidades es consistente en ciertas regiones, lo cual se puede comprobar
observando las densidades de pares de la función de onda y su respectivo comportamien-
to. Se observa en la Fig. 50 a la Fig. 57 que la localización comienza a ser más evidente
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para valores de V cada vez mayores, para valores menores parece estar sucediendo que
la energía asociada a ese estado es mayor que el alto del escalón de potencial, generando
que sea menos evidente la localización.

Figura 46: Entropía de la densidad de pares y reducida del estado n1 = 2, n2 = 4 y V = 1.

Figura 47: Entropía de la densidad de pares antisimétrica y reducida del estado n1 =
2, n2 = 4 y V = 5.

Figura 48: Entropía de la densidad de pares y reducida del estado n1 = 2, n2 = 4 y
V = 10.
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Figura 49: Entropía de la densidad de pares antisimétrica y reducida del estado n1 =
2, n2 = 4 y V = 20.

Figura 50: Densidad de onda simétrica de dos partículas para el estado n1 = 2, n2 = 4 y
V = 1.

Figura 51: Densidad de onda antisimétrica de dos partículas para el estado n1 = 2, n2 = 4
y V = 1.
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Figura 52: Densidad de onda simétrica de dos partículas para el estado n1 = 2, n2 = 4 y
V = 5.

Figura 53: Densidad de onda antisimétrica de dos partículas para el estado n1 = 2, n2 = 4
y V = 5.
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Figura 54: Densidad de onda simétrica de dos partículas para el estado n1 = 2, n2 = 4 y
V = 10.

Figura 55: Densidad de onda antisimétrica de dos partículas para el estado n1 = 2, n2 = 4
y V = 10.
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Figura 56: Densidad de onda simétrica de dos partículas para el estado n1 = 2, n2 = 4 y
V = 20.

Figura 57: Densidad de onda antisimétrica de dos partículas para el estado n1 = 2, n2 = 4
y V = 20.

4.2. Varianza

Otra medida de deslocalización de una densidad de probabilidad, es la varianza, y dado
que se busca comparar las medidas de teoría de la información con otras medidas estadís-
ticas es necesario calcular la varianza y preguntar ¿qué nos dice la varianza para cada uno
de estos casos? En la Fig. 58 se pueden observar las varianzas para cada estado.
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Figura 58: Varianza vs ancho de la barrera, curva roja: densidad simétrica, curva azul:
densidad antisimétrica, primera columna n1 = 1 y n2 = 2, segunda columna n1 = 1 y
n2 = 3, tercera columna n1 = 2 y n2 = 3, cuarta columna n1 = 2 y n2 = 4, V = 1 en la
primera fila, V = 5 en la segunda fila, V = 10 en la tercera fila, y V = 20 en la última
fila.

Viendo la primera columna de la Fig. 58 la varianza muestra que la densidad se deslocali-
za conforme aumenta b, pero ¿es esto cierto?, no necesariamente una forma de comprobar
esto es viendo la Fig. 10, en esta figura se grafican las entropías de pares de varios estados
de la función de onda, al observar la primera columna asociada al estado n1 = 1 y n2 = 2
se observa que conforme aumenta el valor de b la densidad se localiza y cuando b alcanza
un valor cercano a π se deslocaliza la densidad, y la varianza está diciendo lo contrario.
La segunda columna de la Fig. 58 parece estar indicando que la densidad se deslocaliza,
para los primeros valores de b, pero esto no necesariamente es cierto ya que si bien en la
densidad antisimétrica en el estado n1 = 1, n2 = 3 se obseva una deslocalización, esto no
es cierto para la densidad simétrica (ver Fig. 10). Ahora si se observa la Fig. 30 de la en-
tropía de la densidad reducida, se puede notar que esta capta mejor el comportamiento de
la densidad de la función de onda a pesar de reflejar un comportamiento similar solamente
para la densidad antisimétrica.

4.3. Información mutua

Como ya se mencionó, la información mutua, es una medida de la correlación entre dos
variables. En la Fig. 59 se observa que conforme b aumenta a partir de cero en el caso
n1 = 1 y n2 = 2 la correlación entre las dos densidades es la misma tal y como se ha
observado en las entropías de pares, este valor de información mutua crece rápidamente,
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y al alcanzar un máximo disminuye rápidamente, pero conforme el valor de V aumenta
parece que el valor máximo se mantiene constante en mayor parte del intervalo. Para el
n1 = 1 y n2 = 3, este valor sigue siendo positivo pero el comportamiento es distinto, si
bien hay valores de b en los que la información mutua tiene el mismo valor, en términos
generales la densidad anti simétrica posee mayor correlación. Observando la segunda co-
lumna de la Fig. 59, la correlación de la función anti simétrica disminuye en tanto que la
correlación de la función simétrica aumenta. La función antisimétrica alcanza un mínimo
y comienza a aumentar hasta llegar a un máximo, indicando un aumento en la correlación
y disminuyendo hasta tomar un valor similar al obtenido para b = 0, y como ya se mencio-
nó en secciones anteriores, esto es consistente con recuperar el sistema de dos partículas
confinadas en una caja, y parece que las posiciones del mínimo y el máximo se desplazan
hacia b cada vez mayores conforme V crece. De igual modo se puede ver que el compor-
tamiento de la densidad simétrica es más complicado aumentando el número de máximos
y mínimos conforme V aumenta. Para el estado n1 = 2 y n2 = 4 como ya se mencionó se
tienen ciertos problemas numéricos los cuales hacen que el rango de visualización se haya
tenido que recortar, pero en términos generales se tiene un comportamiento en el que la
correlación es igual para ambas densidades en cierta región, pero aumenta la correlación
de la función anti simétrica a partir de cierto valor de b que es diferente para todos los
valores de V .

Figura 59: Información mutua vs ancho de la barrera, curva roja: densidad simétrica, curva
azul: densidad antisimétrica, primera columna n1 = 1 y n2 = 2, segunda columna n1 = 1
y n2 = 3, tercera columna n1 = 2 y n2 = 3, cuarta columna n1 = 2 y n2 = 4, V = 1 en
la primera fila, V = 5 en la segunda fila, V = 10 en la tercera fila, y V = 20 en la última
fila.
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4.4. Coeficiente de correlación

Una vez dicho esto, una pregunta natural que surge de observar el comportamiento de la
información mutua es ¿cómo se comporta el coeficiente de correlación para este sistema?
¿tiene un comportamiento similar a la información mutua? En la Fig. 60 se encuentran
graficados los coeficientes de correlación para los distintos estados. Se observa en la Fig.
60 que en el caso de los estados n1 = 1, n2 = 2 y n1 = 1 n2 = 3 el valor absoluto del
coeficiente de correlación es el mismo, pero el comportamiento de forma general difiere
a la información mutua. En el caso de los estados n1 = 2, n2 = 3 y n1 = 2, n2 = 4
la correlación lineal calculada es cero para estos estados, pero no necesariamente implica
que no haya correlación, ya que la información mutua como medida de correlación parece
detectar mejor esta que la correlación lineal.

Figura 60: Coeficiente de correlación lineal vs ancho de la barrera, curva roja: densidad
simétrica, curva azul: densidad antisimétrica, primera columna n1 = 1 y n2 = 2, segunda
columna n1 = 1 y n2 = 3, tercera columna n1 = 2 y n2 = 3, cuarta columna n1 = 2 y
n2 = 4, V = 1 en la primera fila, V = 5 en la segunda fila, V = 10 en la tercera fila, y
V = 20 en la última fila.
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5. Variaciones del alto del potencial

En la Fig. 61 se tienen las entropías de Shannon para las variaciones del alto del escalón
de potencial.

Figura 61: Entropía de Shannon vs alto de la barrera, curva roja: densidad simétrica, curva
azul: densidad antisimétrica, primera columna n1 = 1 y n2 = 2, segunda columna n1 = 1
y n2 = 3, tercera columna n1 = 2 y n2 = 3, cuarta columna n1 = 2 y n2 = 4, b = 0.001
en la primera fila, b = 1 en la segunda fila, b = 2 en la tercera fila, y b = 3 en la última
fila.

A medida que se incrementa la altura del escalón de potencial, se observa un comporta-
miento diferenciado en la entropía de las densidades de pares, dependiendo del valor del
parámetro b y del par de estados considerados. Para el caso n1 = 1 y n2 = 2, se aprecia
que, con valores de b = 0.001, la entropía tiende a disminuir conforme aumenta la altura
del potencial pero esta disminuye a partir de valores cercanos a 10−3, lo que sugiere una
tendencia a la localización de las densidades pero casi imperceptible (Fig. 62). En con-
traste, cuando b aumenta a 1 o a 2 la disminución de entropía es más evidente, haciendo
notorio el efecto de localización, y si b se aproxima a π (por ejemplo, b = 3), la entropía
crece, indicando una mayor deslocalización, pero en el mismo rango de valores que la
entropía para el menor valor de b.

Para los estados en la primera y tercera columna de la Fig. 61 (n1 = 1 y n2 = 2 y n1 = 2
y n2 = 3) ambas densidades presentan un comportamiento igual ante variaciones del
alto del escalón, manteniendo valores de entropía equivalentes, aunque no necesariamente
evoluciones idénticas. Esta similitud sugiere que las densidades de pares en estos casos
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responden de manera análoga a cambios en el potencial, posiblemente debido a la cercanía
energética de los estados implicados.

En los casos en la segunda y cuarta columna de la Fig. 61 (n1 = 1 y n2 = 3 y n1 = 2
y n2 = 4), el comportamiento de la entropía difiere significativamente entre las densida-
des simétrica y antisimétrica. Para b = 0.001, ambas densidades presentan una entropía
creciente a partir del orden de 10−3, aunque la simétrica (asociada a la línea roja en las
gráficas) se encuentra más deslocalizada. Para b = 1 y b = 2, se observa un aumento en
la entropía, es decir, una deslocalización hasta aproximadamente V = 8, punto a partir
del cual la densidad simétrica comienza a localizarse. En el caso antisimétrico, para b = 1
la localización ocurre en el mismo intervalo de v, mientras que para b = 2 se anticipa
alrededor de v = 4.

En la tercera columna de la Fig. 61 n1 = 2 y n2 = 3, se repite el patrón observado en
n1 = 1 y n2 = 2: para b = 0.001 y b = 3, la entropía tiende a aumentar con el alto del
potencial, mientras que para b = 1 y b = 2 se identifica una fase inicial de deslocalización
seguida de una localización hacia V = 8. Este cambio puede deberse a que, una vez que
el potencial supera la energía del estado, las funciones de onda tienden a confinarse más,
reflejándose en una disminución de la entropía.

Por último, en el estado n1 = 2 y n2 = 4 en la cuarta columna de la Fig. 61 la entropía
se mantiene constante para b = 0.001, con valores idénticos en ambas densidades. Para
b = 1, ambas densidades aumentan su entropía con el potencial, pero la simétrica se des-
localiza en mayor medida. En b = 2, la densidad simétrica comienza más localizada para
bajos valores de v, pero se deslocaliza conforme este crece, al igual que la antisimétrica.
En el caso de b = 3, ambas densidades muestran nuevamente un comportamiento cons-
tante. ¿Son estas observaciones consistentes con la densidad de la función de onda para el
respectivo estado?

Para el estado n1 = 1, n2 = 2 la variación en la entropía es muy pequeña como ya se hizo
mención, se puede visualizar la densidad para comprobar esto.

Figura 62: Densidad de onda simétrica para el estado n1 = 1, n2 = 2 y ancho del escalón
b = 0.001.
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5 VARIACIONES DEL ALTO DEL POTENCIAL

Figura 63: Densidad de onda simétrica para el estado n1 = 1, n2 = 2 y ancho del escalón
b = 1.

Se nota en la Fig. 62 que el efecto de localización es prácticamente imperceptible por
lo delgado de la barrera, y es consistente con lo reflejado en la entropía, el cambio es tan
pequeño que podría decirse que es constante. Si se aumenta el valor del ancho del escalón,
este efecto de localización es cada vez más evidente, como podemos observar en la Fig.
63 y Fig. 64

Figura 64: Densidad de onda simétrica para el estado n1 = 1, n2 = 2 y ancho del escalón
b = 2.
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Figura 65: Densidad de onda simétrica para el estado n1 = 1, n2 = 2 y ancho del escalón
b = 3.

Para el primer estado en el caso de b = 3, se tiene algo muy similar a b = 0.001 (Fig.
62), la deslocalización es imperceptible ya que es equivalente a tener dos partículas en
una caja tal como se refleja en la Fig. 65.

Para el estado n1 = 1, n2 = 3 las densidades de la función de onda graficadas en la Fig.
66 a la Fig. 72 se comportan de forma similar, para b = 0.001 es imperceptible la localiza-
ción, y ambas densidades parecen tener entropías constantes, tanto para el caso b = 0.001
como para b = 3. En b = 1 y b = 2, el comportamiento es distinto, a continuación se
muestran las densidades para estos dos valores de b tanto para el caso simétrico como el
antisimétrico.

Figura 66: Deslocalización de la función de onda simétrica para el estado n1 = 1, n2 = 3
y ancho del escalón b = 1.
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Figura 67: Deslocalización de la función de onda simétrica para el estado n1 = 1, n2 = 3
y ancho del escalón b = 1.

Figura 68: Deslocalización de la función de onda anti simétrica para el estado n1 = 1,
n2 = 3 y ancho del escalón b = 1.
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Figura 69: Localización de la función de onda anti simétrica para el estado n1 = 1, n2 = 3
y ancho del escalón b = 1.

Figura 70: Deslocalización de la función de onda simétrica para el estado n1 = 1, n2 = 3
y ancho del escalón b = 2.
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Figura 71: Localización de la función de onda simétrica para el estado n1 = 1, n2 = 3 y
ancho del escalón b = 2.

Figura 72: Localización de la función de onda anti simétrica para el estado n1 = 1, n2 = 3
y ancho del escalón b = 2.

Se tiene que la entropía de Shannon obsevada en la Fig. 60 es consistente con lo observado
en la localización o deslocalización de la densidad de la función de onda en los estados ya
mostrados en la Fig. 62 a la Fig. 72. En el caso n1 = 2, n2 = 3 se tiene un comportamiento
análogo al caso n1 = 1, n2 = 2 en el que la entropía de ambas densidades es igual. Para
el caso n1 = 2, n2 = 4 las densidades se comportan de la siguiente manera.
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Figura 73: Localización de la función de onda simétrica para el estado n1 = 2, n2 = 4 y
ancho del escalón b = 1.

Figura 74: Deslocalización de la función de onda simétrica para el estado n1 = 2, n2 = 4
y ancho del escalón b = 1.
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Figura 75: Deslocalización de la función de onda anti simétrica para el estado n1 = 2,
n2 = 4 y ancho del escalón b = 2.

Figura 76: Localización de la función de onda anti simétrica para el estado n1 = 2, n2 = 4
y ancho del escalón b = 2.
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5.1 Densidad reducida 5 VARIACIONES DEL ALTO DEL POTENCIAL

Figura 77: Localización de la función de onda simétrica para el estado n1 = 2, n2 = 4 y
ancho del escalón b = 2.

5.1. Densidad reducida

Tal como se hizo para variaciones en el ancho del escalón, se busca comparar la entropía
de la densidad de pares con la entropía de la densidad reducida. A continuación se grafican
estas entropías en la Fig. 78.

Figura 78: Entropía de las densidades reducidas vs alto de la barrera, primera columna
n1 = 1 y n2 = 2, segunda columna n1 = 1 y n2 = 3, tercera columna n1 = 2 y n2 = 3,
cuarta columna n1 = 2 y n2 = 4, b = 0.001 en la primera fila, b = 1 en la segunda fila,
b = 2 en la tercera fila, y b = 3 en la última fila.

57 PROYECTO TERMINAL I
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Se observa que estas entropías presentan un comportamiento similar al obtenido en la en-
tropía de la densidad reducida al realizar variaciones del ancho de la barrera de potencial
Fig. 30 aunque no la misma evolución, ambos casos presentan comportamientos similares
a la densidad de pares antisimétrica compartiendo máximos en los casos en los que esta
variación de entropía es notable, en los casos en los que se tiene una variación lineal de
la entropía tanto creciente como decreciente no se puede establecer un criterio de simila-
ridad a una densidad de pares o a otra, ya que si bien ambas comparten comportamientos
crecientes a orden muy bajo, no podría decirse entonces que la densidad reducida y la anti
simétrica o simétrica son similares. Esta similaridad mencionada se da en casos en los que
b = 1 y b = 2 excepto para el estado n1 = 2, n2 = 4 para b = 2, este caso es la excepción,
ya que la densidad reducida no se comporta como la densidad simétrica ni anti simétrica.

5.2. Varianza

Figura 79: Varianza vs alto de la barrera

La varianza ante variaciones en el alto de la barrera de potencial tampoco refleja el com-
portamiento observado en las densidades de pares de la función de onda (Fig. 79). En la
primera columna la varianza está diciendo que se tiene el comportamiento contrario al
observado en la densidad reducida y en las densidades de pares, en la cuarta fila asociada
a un valor de b ∼ π el aumento en la varianza se da al mismo orden en el que se pre-
sentan variaciones en la entropía de Shannon al variar el alto de potencial para ese valor
fijo de b (10−3), de modo que podríamos decir que tanto la varianza como la entropía es
constante. En la segunda columna solo difieren la segunda y tercera gráfica, mostrando
que la varianza detecta deslocalización cuando lo presentado en términos de la entropía
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de Shannon y la densidad de pares es distinto a esto, se tienen intervalos de localización
y deslocalización y es algo que la varianza no detecta. En la tercera columna la primera,
segunda y tercer gráfica difieren por completo de lo observado en la entropía de Shannon,
y coincide en la última gráfica como ya se hizo mención. En la cuarta columna coinciden
solamente la primera y última gráficas, de modo que podría pensarse que tal como en el
caso anterior para variaciones del ancho del escalón, que la varianza de esta distribución
no logra detectar la localización o deslocalización de la densidad.

5.3. Información mutua

Figura 80: Información mutua vs alto de la barrera , curva roja: densidad simétrica, curva
azul: densidad antisimétrica, primera columna n1 = 1 y n2 = 2, segunda columna n1 = 1
y n2 = 3, tercera columna n1 = 2 y n2 = 3, cuarta columna n1 = 2 y n2 = 4.

La información mutua en la Fig. 80, muestra que al aumentar V , en la primera columna,
es decir, el estado n1 = 1 y n2 = 2, la correlación crece, para b = 1 y b = 2 en la segunda
y tercera fila de la Fig. 80 se tiene un incremento de correlación bastante grande en el
momento en que la densidad de pares se localiza en el sistema. Para n1 = 1 y n2 = 3
en la segunda columna, de la primera y última gráfica puede decirse que la correlación
es constante, pero para b = 1 en la segunda fila se tiene una pérdida en la correlación
bastante abrupta en el rango en que se deslocaliza la densidad de pares (Fig. 61) y para
b = 2 la correlación en la densidad anti simétrica es mayor que en la densidad simétrica, y
esta correlación tal como ya se mencionó aumenta o disminuye en los valores en los que la
densidad de pares se localiza o deslocaliza respectivamente y este análisis es análogo para
los otros 2 estados, conforme se localiza la densidad de pares la información mutua crece
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y conforme esta densidad se deslocaliza se pierde correlación, es decir, la información
mutua decrece. ¿Este comportamiento se ve reflejado en el coeficiente de correlación?

5.4. Coeficiente de correlación

Figura 81: Coeficiente de correlación lineal vs alto de la barrera, curva roja: densidad
simétrica, curva azul: densidad antisimétrica, primera columna n1 = 1 y n2 = 2, segunda
columna n1 = 1 y n2 = 3, tercera columna n1 = 2 y n2 = 3, cuarta columna n1 = 2 y
n2 = 4

Tal como se vio en la sección anterior en la Fig. 59, para estados impares de la función de
onda (n1 = 1, n2 = 2 y n1 = 2, n2 = 3) el valor absoluto del coeficiente de correlación
es mayor a cero, y es igual para ambos casos, y en casos del primer estado en la primera
columna de la Fig. 81 en valores de b = 1 y b = 2 (segunda y tercera fila Fig. 81) se tiene
una correlación o anti correlación casi perfecta donde |τ | ∼ 0.98. En el caso n1 = 2 y
n2 = 3 en la tercera columna de la Fig. 81, en b = 1 y b = 2 se pierde correlación al
aumentar el valor del alto del potencial, pero esto es contradictorio a lo observado en la
densidad de pares, ya que al confinar las partículas se gana correlación, y por lo tanto esta
pérdida de correlación es contradictoria a lo observado. Para estados pares de la densidad
de pares tales como n1 = 1, n2 = 3 y n1 = 2, n2 = 4 nuevamente no se está detectando
correlación lineal en estos estados, indicando que posiblemente la paridad juega un papel
fundamental en la detección de correlación en este sistema.
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6 CONCLUSIONES

6. Conclusiones

A lo largo de este trabajo se resolvió la Ec. de Schrödinger independiente del tiempo en el
doble pozo cuadrado de potencial para una partícula para dar paso a construir la solución
para dos partículas no interactuantes confinadas en este sistema, y se ha encontrado que la
paridad de la función de onda, juega un papel importante en la detección de correlación li-
neal en el sistema, ya que al momento de calcularla, no fue posible detectarla para estados
pares, y queda la pregunta abierta ¿por qué sucede esto? dando lugar así a mostrar que la
información mutua en este contexto detecta de mejor forma las correlaciones entre varia-
bles. De igual forma, la entropía de Shannon calculada para la densidad de pares captura
de mejor forma las transiciones entre localización y deslocalización tanto al variar b como
al variar V comparada con la varianza de la distribución de la función de onda. En par-
ticular la densidad antisimétrica posee una restricción a lo largo de la diagonal x1 = x2,
esto debido al principio de exclusión de Pauli [12], impidiendo que en las regiones en las
que la posición de ambas partículas sea igual que los picos de densidad tengan una re-
gión prohibida entre ellos, lo que se traduce en una mayor localización, y por lo tanto una
caída en la entropía que es algo que se observó en los casos pares de la función de onda,
la entropía antisimétrica mostraba, en la gran mayoría de los casos, valores menores que
los de la entropía simétrica. En este proyecto, se han analizado las medidas de teoría de
correlación para poder comparar cómo es que se obtiene información sobre el estado de
la función de onda al variar los parámetros del sistema, todo este análisis resalta la venta-
ja de las medidas de teoría de la información en este sistema para detectar correlaciones
de origen cuántico, y cómo estas medidas brindan mayor claridad sobre los estados de la
densidad de la función de onda y cómo los cambios en los parámetros del sistema inducen
cambios en la localización o deslocalización de la densidad de pares. El próximo proyec-
to contemplará la construcción de la función de Wigner para este sistema para hacer un
análisis de las marginales y la negatividad de esta, así como calcular las medidas de teoría
de la información calculadas en este proyecto para así entender el comportamiento de esta
función en el espacio fase.
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A CONSTANTES DE NORMALIZACIÓN

A. Constantes de normalización
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