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I RESUMEN

1. Resumen

Este trabajo presenta un andlisis tedrico de un sistema cudntico formado por dos particu-
las indistinguibles confinadas en un doble pozo infinito de potencial. Primero se resuelve
la ecuacion de Schrodinger independiente del tiempo para una particula y, a partir de aht,
se construyen las funciones de onda simétrica y antisimétrica que describen al sistema de
dos particulas. Posteriormente, se cuantifica la localizacion o deslocalizacion espacial de
la densidad de probabilidad conjunta y de las densidades reducidas mediante medidas de
teoria de la informacion, como la entropia de Shannon, y de correlacion, como la informa-
cién mutua, el coeficiente de correlacion de Pearson y la varianza al realizar variaciones
de los pardmetros del sistema, tales como, el ancho del pozo (b) y la altura de la barrera
(V).

Palabras clave: Mecdnica cudntica, ecuacion de Schrodinger, doble pozo infinito de po-
tencial, entropia de Shannon, informacién mutua, coeficiente de correlacion de Pearson,
varianza, deslocalizacién espacial.
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2 INTRODUCCION

2. Introduccion

La mecdnica cudntica surge a principios del siglo XX como una rama de la fisica para
describir el comportamiento de fendmenos a nivel atémico, ya que la mecdnica cldsica no
podia describir de manera apropiada ciertos fendnemos tales como la radiacién de cuerpo
negro, el efecto fotoeléctrico, o la estabilidad de los dtomos, esta rama impulsé la bus-
queda de nuevos conceptos para brindar una explicacién. El primer descubrimiento llegd
alrededor del afio 1900 cuando Max Planck introdujo el concepto de cuanto [9], postu-
lando que el intercambio de energia entre la radiacién y sus alrededores se da en forma
de paquetes cuantizados [[3]]. En 1905, Albert Einstein ayudé a consolidar el concepto de
cuanto propuesto por Planck [[I0]], reconociendo que la cuantizacién de ondas electromag-
néticas también debia ser vélida para la luz, de modo que propuso que la luz en si misma
estd hecha de pequefios pedazos de energia o pequefias particulas llamadas fotones, dan-
do la oportunidad a Einstein de dar una explicacion al efecto fotoelétrico. Estos trabajos
asi como el realizado por Compton [[I3]] dieron las bases tedricas y experimentales para el
desarrollo de la mecénica cudntica. Una particula confinada en una caja es uno de los siste-
mas mas simples a estudiar en mecdnica cudntica, el andlisis de este tipo de sistemas tiene
su origen en la segunda década del siglo XX con el origen de la mecdnica cudntica, con la
formulacion ondulatoria propuesta por Schrédinger [[I4]], este permite analizar fenémenos
fundamentales de la mecdnica cudntica, tales como estados estados ligados y la cuanti-
zacion de energia. En este proyecto se estudia un sistema compuesto por dos particulas
indistinguibles confinadas en un doble pozo de potencial. Abordaremos el problema en
una dimension, haciendo un analisis mediante herramientas de teoria de la informacién.
Entre los conceptos que se utilizardn se encuentra la entropia de Shannon, que puede ser
interpretada como una medida de incertidumbre en una distribucién probabilistica, o la
informacién mutua, que puede ser entendida como la informacién contenida en una va-
riable acerca de otra correlacionada, dando paso a estudiar estas medidas en el espacio de
posicion para asi analizar las diferencias entre las densidades provenientes de las funcio-
nes de onda simétrica y antisimétrica, de modo que se pueda establecer una comparacion
entre medidas como lo son la entropia de Shannon, entropia de las densidades reducidas,
y la varianza para asi determinar cudl de estas medidas captura mejor el comportamiento
de la densidad de pares al variar los pardmetros del sistema en comparacién con canti-
dades como la varianza que es otra medida de la deslocalizacién espacial, y en términos
de medidas de correlacion, estudiar la informacién mutua y el coeficiente de correlacion
para poder determinar, cudl de estas medidas refleja de manera mds precisa la correlacion
entre las posiciones de las particulas al variar los pardmetros del sistema.

2.1. Ecuacion de Schrodinger

A principios del siglo XX, los modelos atomicos cldsicos como el propuesto por Niels
Bohr [[I6]], habian logrado explicar ciertos aspectos del 4tomo de hidrégeno; esta propuesta
postulaba que la materia poseia propiedades ondulatorias y sento las bases para que se
reconsiderara la naturaleza de la particula. Inspirado por esas ideas, Schrodinger
introdujo una ecuacién diferencial en la que la funcion de onda V(7 ¢) no era mas que
una herramienta matemadtica para predecir la probabilidad de encontrar una particula en
determinada region del espacio.
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2.2 Mecanica cudntica de varias particulas 2 INTRODUCCION

Esta nueva ecuacion respondia a una necesidad crucial, explicar por qué los &tomos poseen
niveles discretos de energia y como se organiza la distribucién de los electrones en los
orbitales. En su forma general, la ecuacién de Schrédinger dependiente del tiempo para
una particula de masa m en un potencial V' (7, t) se expresa como:

Lo0v(rt) [ R, . .

Donde el operador V? es el laplaciano, este término representa la energfa cinética del
sistema y tiene la siguiente forma:

V= —+4 —+ - (2.2)

V' (7, t) corresponde al potencial externo que actia sobre la particula; este puede depender
tanto del tiempo como de la posicidn, y representa la energia potencial del sistema.

Para sistemas en estado estacionario, se asume una solucidn separable en funcidn espacial
— —\ —iEt sz YR B . .

y temporal V(7 t) = ¢ (r)e " , que lleva a la ecuacién de Schrodinger independiente del

tiempo:

I ) + VA = B 3

Esta ecuacion se formula como un problema de valores propios, donde las funciones de
onda v, (7) son las funciones propias y los correspondientes valores F,, constituyen el
conjunto de niveles de energia permitidos. Asi, cada indice n identifica un valor propio
E,, y la cuantizacion de la energia se deriva de las condiciones de contorno y normali-
zacion que restringen las soluciones no triviales [[I4]. La normalizacién de la funcién de
onda y la imposicion de condiciones de contorno como las asociadas a este problema en
las cuales la funcién se anula en regiones para las cuales V' — oo, garantizan que las
soluciones sean fisicamente aceptables. Para sistemas ideales como una particula en un
pozo infinito de potencial, un oscilador armonico, las soluciones dadas son analiticas. En-
tre estos, el problema del doble pozo cuadrado de potencial infinito representa un caso en
el que las soluciones de la ecuacion de Schrodinger pueden obtenerse de forma analitica
en cada region del potencial; sin embargo, la imposicién de las condiciones de frontera
en este problema origina ecuaciones trascendentales para los valores propios (energias),
es decir, estas ecuaciones implican expresiones en las que las funciones trigonométricas y
exponenciales se combinan con los pardmetros energéticos y para las cuales las soluciones
deben encontrarse mediante métodos numeéricos. Esto representa un problema de valores
propios en los que existen infinitas raices, para estos hay algoritmos como el método de
Newton-Raphson [[I5]] que requiere tener una estimacion inicial, y si la estimacién inicial
no es buena esto podria llevar a una convergencia errénea o incluso a una divergencia en
el cdlculo.

2.2. Mecanica cuantica de varias particulas

Dado que este sistema estd compuesto por dos particulas, es necesario describir la dina-
mica de un sistema de N particulas, esto se puede obtener a partir de la descripcién para
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2.2 Mecanica cudntica de varias particulas 2 INTRODUCCION

una particula. Se sabe que el estado de un sistema de N particulas sin espin estd dado por
una funcién de onda W (71, 73, ..., 75, t), donde el cuadrado de esta funcién de onda repre-
senta la densidad de probabilidad al tiempo t de encontrar la particula 1 en el elemento
de volumen d3r; centrado en 77, la particula 2 en su respectivo volumen respectivamente
hasta la N-ésima particula [J3]].

Esta funcion de onda, ¥, evoluciona en el tiempo acorde con la ecuacién de Schrodinger:

OV (11,75, ..., TN,
PGP I L) BT R s (2.4)
ot
Donde el operador Hesel operador hamiltoniano y tiene la siguiente forma que es una

generalizacion del caso de una sola particula:

N 2
h’ — — —
H:Z2mAv§+V(T1,T’2,...,T’N,t). (25)
=1 J

En el problema tratado en este proyecto, se estard considerando el caso en el que el poten-
cial es independiente del tiempo, de modo que la solucién de la ecuacion de Schrodinger
estard dada por estados estacionarios:

(11, 7%, oy 130, 1) = (77, 7%, ..y 750 ) e BN, (2.6)

Donde E es la energia total del sistema y ¢ es la solucion a la ecuacion de Schrodinger
independiente del tiempo Hvy) = E1.

N 2

h . . - ..
ZiV?—FV(Tl,Tg,...,T‘N) T/J(’r'l,rg,...,TN> :Ew(rl,rg,...,rN). (27)

j=1 2m;

En mecadnica cldsica, si un sistema estd compuesto por N particulas idénticas, es posible
distinguir cada particula; sin embargo, en mecdnica cudntica esto es imposible, ya que
para describir una particula no podemos hacer mas que especificar un conjunto completo
de observables que conmutan, y no existe un mecanismo para etiquetar particulas; ademads,
el principio de incertidumbre hace que el concepto de trayectoria pierda sentido, y aun si
la posicién fuera completamente determinada a algin tiempo, es imposible especificar
cudl serd su posicion en el instante que sigue, por lo tanto, el concepto de distinguibilidad
pierde sentido en mecdnica cudntica.

Consideremos un sistema de N particulas cuya funcién de onda es i(r1, 73, ...,7x), si
estas particulas son mezcladas no hay forma de determinar cudl particula tiene la coorde-
nada 71, o cudl tiene la coordenada r5 y asi sucesivamente, de modo que la tinica medicién
que se puede realizar es aquella que especifique la probabilidad de alguna particula de es-
tar localizada en 7 otra en 79, hasta ry. Como resultado de esto, la probabilidad no debe
cambiar al intercambiar particulas, esto es, si cambiamos la particula ¢ con la particula
J, esta densidad de probabilidad debe ser idéntica, por lo tanto, debe ser de la siguiente
forma [J3]]:

|W (51, 72, ooy Thy oeey T ...,7’7\;)\2 = |W(r1, 72, ooy T,y ey Ty ...,7"7\;)\2. (2.8)
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2.3 Teoria de la informacion 2 INTRODUCCION

Por lo tanto, se tiene:
U(T, 7%, ey Thy ey Ty ooy TR) = (1, T2y ooy Ty ooy Thy oo, TR (2.9

Esto implica que la funcién de onda para un sistema de N particulas indistinguibles puede
ser simétrica o antisimétrica ante el intercambio de un par de particulas. Podria proponerse
una solucidn de la siguiente forma:

W(r1, 13, ey ) = U1 (11)12(73) ... bn (7). (2.10)

El problema con esta propuesta es que estd considerando que se pueden etiquetar parti-
culas en este contexto haciéndolas distinguibles, pero eso no es posible ya que, como se
menciond, en mecdnica cudntica es imposible hacer esta distincién y ademas el producto
de estas funciones no necesariamente tiene definida una simetria, que es un requisito para
sistemas de N particulas cuyas funciones son simétricas o antisimétricas como ya se ha
mencionado. Para construir estas funciones, consideremos un sistema como el planteado
en este trabajo, es decir, un sistema de dos particulas indistinguibles, ya que para este caso
la funcién de onda simétrica y anti simétrica sera:

1
U, (r,75) = —= [V(ri,ra) + W(rs, m1)]. 2.11
(r1,73) \/5[(1 2) + (3, )] (2.11)
W 7) = s (V0 75) — W(5%, 7)) @.12)
o(71,73) = — [V(r1,r3) — ¥(rs,r1)] . .
nT2) = Th 1,72 2,71
Donde 1/+/2 es un factor de normalizacién, y W (s}, 73) se propone como una solucién
separable W (77,735) = 11 (r7)9(r3)), de modo que las funciones tanto simétrica como
antisimétrica serdn:
- 1 - - - "
W,(ri,m3) = ﬁ [1h1(71)2(72) + 1 (13) 2 (r7)] - (2.13)

1
V2
Para el caso en que ambas particulas comparten el mismo estado cudntico la funcion de
onda simétrica estd dada por W (71,73) = ¥, (71)¥n,(73) y la funcién antisimétrica es
cero, en este caso existe una restriccion en la funcion anti simétrica, esta restriccion viene
del principio de exclusion de Pauli [[I2]], ya que la funcion antisimétrica estd asociada a
fermiones y estos obedecen este principio de exclusion. Esta construcciéon puede exten-
derse al caso de NV particulas, pero dado el objetivo de este trabajo que es hacer el anélisis
para dos particulas, esta construccién es mas que suficiente.

\Il(l(T_i, T_é) -

Wl(ﬁ)%(@) - ¢1(5)¢2(ﬁ)] . (2.14)

2.3. Teoria de la informacion
La teorfa de la informacion surge en la primera mitad del siglo XX; Claude Shannon sent6

las bases de esta teoria [@] Se estudiaba como se transmite, procesa y almacena la infor-
macion en diversos sistemas de comunicacion. El trabajo de Shannon introdujo conceptos
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2.3 Teoria de la informacion 2 INTRODUCCION

esenciales como la entropia, definida como una medida cuantitativa de la incertidumbre.
La entropia de Shannon esta definida de la siguiente forma:

—Zpk log py. (2.15)
k

Donde p;. es la distribucion de probabilidad. Dada la interpretacion probabilistica de la
funcién de onda, es posible establecer una conexion entre ambas teorias . Entonces,
podemos entender la entropia de Shannon como una medida de la incertidumbre asociada
al sistema o como una medida de localizacion si se trata de una distribucién de probabili-
dad [[I]]. Es decir, la entropia de Shannon mide qué tan concentrada estd dicha densidad en
una regién del espacio. Una distribucién “localizada” significa que casi toda la probabili-
dad se acumula en una zona pequefia, mientras que una “distribucion deslocalizada” esta
extendida en un drea amplia.

El uso de la entropia en teoria de la informacién encaja perfectamente con la naturaleza
estadistica de las mediciones en mecdnica cudntica, por lo que lo tinico que se debe hacer
es insertar el conjunto de probabilidades obtenidas de la funcién de onda en la entropia de
Shannon.

Dado que el cuadrado de la funcién de onda representa una distribucién de probabilidad
continua, es necesario definir la entropia para una distribucién continua [J3]:

S = —/ p(x)log p(z)dz. (2.16)
Donde p(x) es la distribucién de probabilidad p(z) = [¢(z)|?. Para un sistema de dos

particulas se considera la entropia conjunta, para el caso discreto, la entropia conjunta de
una pareja de variables discretas se define como:

S(X,Y)=—=> > p(z,y)logp(z). (2.17)

zeX yeYy

Donde p(x,y) es el cuadrado de la funcién de onda, ya sea simétrica o antisimétrica. De
forma similar al caso de una variable, la entropia conjunta para un conjunto de variables
aleatorias continuas, se define como: [4]]

h(X1, Xo, ooy X /f iog f(z")dx (2.18)
Para este sistema la entropia de pares serd calculada de la siguiente forma: [[I} [6]

S(x1, 1) = /p x1,22) In p(x1, x9)dx dxs. (2.19)
Donde p(z1, ) es la densidad de probabilidad asociada al sistema. Igualmente es posible

definir una entropia relativa conjunta cuya distribucion de referencia es el producto de las
marginales, definida como informacién mutua: [[I]

I, —//p T1, To) (w;’pf;i)dxldxg. (2.20)
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2.3 Teoria de la informacion 2 INTRODUCCION

Donde p(z1) y p(x2) se definen como las marginales de la distribucion y es la distribucién
de una variable aleatoria sin tener en cuenta las demds variables del sistema. Si 1 y x5
tienen una distribucién conjunta, la marginal de x; se obtiene integrando sobre x5:

p(xy) = /p(xl,@)dxg. (2.21)

Esta cantidad responde a la pregunta ;cuél es la probabilidad de que x; = x sin importar el
valor de x,. Dado que es una distribucion de probabilidad, debe cumplir con la propiedad
de normalizacién. De igual forma puede calcularse otra medida de correlacion estadistica
entre las variables de este sistema, y esa es el coeficiente de correlaciéon de Pearson []1']],
que detecta correlacion lineal entre variables continuas.

<5L“11’2> - <I1><$2>
. (2.22)
V(@) — (@1)2\/(@3) — (23)

Cuyo rango de valores estd entre 1, siendo +1 una correlacidn lineal positiva, indicando
que si una variable aumenta la otra aumenta en proporcidn constante, si el coeficiente es
—1 tendremos una correlacion lineal negativa, a medida que una variable aumenta la otra
disminuye, si 7 = 0 esto indica que no existe correlacion lineal, es decir, podria no existir
correlacion entre ninguna de las variables o en su defecto el tipo de correlacion entre las
variables puede no ser lineal. Esta correlacion puede ser interpretada como una medida
de la separabilidad del sistema ya que si la descripcion de un sistema requiere de dos (o
mads) variables, se dice que estas estdn estadisticamente correlacionadas si su funcién de
distribucién no puede separarse como producto de cada una de ellas [[]).

T =
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3 SOLUCION PARA UNA PARTICULA

3. Solucion para una particula

Una vez dado el contexto y los fundamentos tedricos del trabajo, se procede a explicar el
planteamiento del problema para una particula y, posteriormente, hacer la transicion a dos
particulas.

Se tiene una particula confinada en la siguiente regién de potencial.

V(x)
Vo

B
|
o
B
+
SIS

Figura 1: Doble pozo cuadrado de potencial de paredes infinitas y longitud 7 centrado en
5 con una barrera de ancho b y alto Vj.

Cuyas regiones son las siguientes:

oo, z<0ox>m,
b
0, O0<x<j-—

V(z) = N 2 (3.1)
Vo, §—§§$§§+§a

0, §+%<x<7r.

Su descripcion estd dada por la ecuaciéon de Schrodinger.

R )
2m  dz?

+ V(x)y(x) = Entp(z). (3.2)

Dividimos este problema en tres regiones de interés.

0, O<z<I-1%
Viz)=qVo, 2-2<a<I+8 (3.3)
0, %+g<x<7r.

Se consideraran unidades atémicas, es decir, h = 1 y m = 1, y para las cuales la ecuacion
de Schrodinger tiene la siguiente forma.

Para la primera region:
1 d2w1 (l’)
2 dx?

= B (). (3.4)
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3 SOLUCION PARA UNA PARTICULA

Transformando la ecuacion se obtiene:

a9y (x)

dx?

+ 2B, (z) = 0. (3.5)

Es claro que es una ecuacién de oscilador arménico, y proponemos la solucién de la
forma:

U (z) = eM”. (3.6)

Se define entonces A,
2\ =2F,.

La propuesta de solucién hecha dard una solucién en términos de senos y cosenos.

Py (z) = Asin A,z + Bcos A\, . (3.7)
Para la segunda region:
1 d?
T | () = Buala) 38)
d2
U20) 51— Euala) = . 39)

Se define k en términos de \ como:
K2 = 2Vh — A2

Para regiones en las que la energia del sistema sea menor que la barrera de potencial
(E < Vp) se tendran soluciones reales.

o(x) = 7. (3.10)
Cuyas soluciones seran:

o(z) = C'sinh K,z + D cosh k. (3.11)

Para la tercera region, las soluciones serdn muy parecidas a las obtenidas en la primera
region.

1 d*3(2)
—5 g = Ents(2). (3.12)
1 (z) = Asin A\, (m — ) + Bcos A\, (1 — ). (3.13)

Por lo tanto, el conjunto de soluciones para cada region del espacio es el siguiente:

Asin \,x + B cos \,x, 0<$<g—g,
Y(z) = ¢ Csinh ko + Dcoshkpz, 5 — g <z <3+ g, (3.14)
Asin \,x + Bcos A\, §+§<x<7r

Es necesario analizar la forma de la funcidn en las distintas regiones poniendo ciertas
condiciones de frontera y, a partir de aqui, determinar las constantes y los valores propios,
es decir, las energias. Asi mismo, se debe considerar la paridad de la funcién de onda,

10 PROYECTO TERMINAL I



3 SOLUCION PARA UNA PARTICULA

ya que esta dard posteriormente los estados energéticos de la funcion. Para estados con
nimero cudntico n = 2/ — 1 se asociardn estados pares de la funcién de onda, y para
estados con nimero cudntico n = 2[ se asociardn estados impares de la funcién de onda,
i.e., para soluciones pares consideraremos soluciones en la regién central asociadas al co-
seno hiperbdlico, y para soluciones impares seran aquellas asociadas al seno hiperbdlico.
De igual manera se obtendran dos conjuntos de soluciones asociadas a las constantes de
normalizacién, un conjunto para las regiones pares, y otro para las impares. Se comenzard
haciendo el anélisis para la region par.

En 2z = 0 se debe cumplir que

Y1(0) = 0. (3.15)

Evaluando la funcién:
1(0) = Asin \,,0 + B cos A,0 = 0. (3.16)

Resultando asi que B = 0, entonces ¢ (z) = A; sin \,,x.

Para la segunda region, la funcién de onda ser4:
o(x) = D cosh k,x. (3.17)

La solucién en esta region debe estar centrada en 7 de modo que al evaluarla en el centro,
esta se anule, por lo que ), es:

o(x) = D cosh ky, (m - ;T) (3.18)
En x = 7 debe cumplirse que la funcién de onda debe anularse, 13(7) = 0
s(m) = Asin \,m + B cos A\, . (3.19)

Esto tiene un grave problema ya que la condicién para que esto se anule estd completa-
mente en \,, por lo que es necesario escribir la funcién de onda de tal forma que en ese
intervalo al llegar a 7 se anule, por lo tanto, la funcién tendria la siguiente forma:

Y3(z) = Asin A\, (m — ) + Bcos A\, (m — x). (3.20)
De esta forma, si evaluamos la funcién de onda en 7
3(m) = Asin A0 + B cos A,,0. (3.21)
Por lo que para esta region B también es cero, entonces
() = Ay sin \, (7 — ). (3.22)

Por lo tanto, el conjunto de soluciones para la region par es:

A; sin \,z, O<z<i-—2
Y(x,\y) = Dcoshkp(z—3), F—2<ax<i+2 (3.23)
Ajsin)\,(m—2), IT+i<az<m

11 PROYECTO TERMINAL I



3 SOLUCION PARA UNA PARTICULA

Se debe garantizar la continuidad de la funcion de onda en todas las regiones del pozo de
potencial; por lo tanto, es necesario considerar las siguientes condiciones de continuidad:

w(5-3)=n(3-3) (3.24
¥, (;T + g) — 1)y <72T + ;) , (3.25)
¥ (; - g) — v} (;T - S) , (3.26)
v <72T + g) =} <72T + g) . (3.27)

De la primera condicidn se obtiene:
Aqsin \, <7T2_b> = D cosh /ing. (3.28)

De la segunda condicion se obtiene:
Aqsin )\, (W _ b) = Dcosh /inl;. (3.29)

Y es obvio que se obtiene la misma ecuacién que en el primer intervalo, por lo que hay
que considerar la continuidad de las derivadas de la funcién de onda:
m—>

b
A1)\, cos \, < ) = — Dk, sinh /€n§. (3.30)

Para la dltima region:

3 b
AL\, cos A, (W . ) = —Dr, sinh s . (3.31)

Se obtiene la misma ecuacion, por lo que haciendo el cociente entre las ecuaciones [3.29)
y[3.31] obtenemos una ecuacién trascendental para determinar \,,.

A COt A, <7r—b

b
5 > = —/ﬂntanhnni. (3.32)

Cuya solucién debe ser determinada de forma numérica. Estas soluciones para A corres-
ponden a los niveles energéticos. Como es bien sabido, la funcién de onda por su in-
terpretacion estadistica como densidad de probabilidad, debe cumplir con la siguiente
condicion:

/OO () Pdx = 1. (3.33)

Es decir, esta funcion debe estar normalizada. Por lo que la condicién de normalizacién
para esta solucidn es la siguiente:

12 PROYECTO TERMINAL I



3 SOLUCION PARA UNA PARTICULA

T—b w+b

/7 (A; sin /\nx)de—i—/Tb (D cosh k,(x — g))de—i-/tb (Aysin \, (7 — x))%dw = 1.
0 = Tt

(3.34)
Teniendo entonces un sistema de 2 ecuaciones para dos variables, A; y D, que son las
respectivas constantes de normalizacién que serdn funcién del potencial Vj, de by de A,
cuya expresion completa estd en el apéndice [A]

jus

Pasando ahora al caso impar, en la regi6n central se tendrd una funciéon —C'sinh x,, (5 — z),
y en la tercera regién habrd un cambio de signo, es decir, tendremos — Aj sin A, (z — )
asi como las siguientes condiciones de frontera y las respectivas constantes de normaliza-

cion:
™ b T b
e ) 538
™ b T b
() (2 + 2) =13 <2 + 2) ) (3.36)
A A N
w1<2 2)w2(2 2>, (3.37)
A A N
¢2<2+2>—w3<2+2>. (3.38)
T—b T+b
= . 2 kN . T 2 T . 2
/ (Agsin A\, x) dx—i—/ , (Csinhk, (2 - w)) dx—l—/ﬂ) (Agsin A\, (z — m))°dx = 1.
0 2 m+b
i ’ (3.39)
De las condiciones de continuidad obtendremos las siguientes ecuaciones:
—b b
Aysin A, (” ) = Csinhr, . (3.40)
De la segunda condicién se obtiene:
—b b
Aysin A, (” ) = Csinhr, . (3.41)

De la tercera y cuarta condicién se tiene:

T—2b

b
A\, cos \, <2> = —Ck,, cosh K”ﬁ’ (3.42)

Dando entonces un sistema de 2 ecuaciones para dos variables, A, y C, que son las respec-
tivas constantes de normalizacion para funciones impares que serdn funcién del potencial
Vo, de by de \,, cuya expresion completa estd expresada en el apéndice |Al Ahora, si se
dividen estas dos ecuaciones se obtiene la siguiente ecuacion trascendental:

T—2b

2

b
Ay, COt A\, < ) = —k,, coth H"i' (3.43)
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3 SOLUCION PARA UNA PARTICULA

Que es crucial para encontrar las respectivas raices para las soluciones impares. De modo
que el conjunto de soluciones para esta region es el siguiente:

Ay sin \,x, O<x<§—g,
Y(z, M) = { ~Csinhr, (v - %), T-b<a<Itl (3.44)
Ay sin A, (7 — x), T4bcr<n

Una vez hecho este andlisis es posible dar la funcién de onda, para este trabajo se con-
sideraron 4 numeros cudnticos, es decir, 4 niveles energéticos dentro de este sistema de
doble pozo infinito, consideraremos que n va de 1 a 4, por lo tanto las funciones de onda
para cada uno de estos valores estdn graficadas en la Fig. 2] a la Fig. 5] Los estados se
clasifican por su paridad: los valores n = 2/ — 1 corresponden a funciones de onda pares y
los valores n = 2 a funciones impares. El estado fundamental (n = 1) no muestra ningin
nodo (Fig. 2, el primer excitado (n = 2) presenta un nodo en el centro y I6bulos de signo
opuesto a ambos lados (Fig. [3)), el segundo excitado (n = 3) recobra la simetria par con
dos nodos dentro de los pozos y un mayor nimero de oscilaciones (Fig. ), y el tercer
excitado (Fig. |§[) muestra tres nodos, es decir, para cada estado se tienen n — 1 nodos.

Funcion de onda paran = 1
P(x,A,n)

08
06
04r

02

Figura 2: Funcién de onda paran = 1,1V, = 5,0 = 1.
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3 SOLUCION PARA UNA PARTICULA

Funcién de onda paran=2

Y(x,A,n)
05+
L | L L L | L L L L 1 L L L L | PR L L | L L L L | ¥
05 10 15 20 25 3.0
05+
Figura 3: Funcién de onda paran =2,V = 5,0 = 1.
Funcion de onda paran= 3
W(x,A,n)
05
1 | 1 Il L W | I I I 1 1 Il ! ! I | L ¥
05 10 15 20
-05F
_10 =

Figura 4: Funcién de onda paran = 3,V = 5,0 = 1.
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3 SOLUCION PARA UNA PARTICULA

Funcién de onda para n =4
Y(x,A,n)

05+

05+

Figura 5: Funcién de onda paran =4, V, = 5,b = 1.

Estas funciones de onda en comparacion con las funciones de onda de una particula en
un pozo cuadrado de potencial poseen una diferencia en la simetria y estructura. Para un
pozo cuadrado (Vo = 0y b = 0) las funciones de onda tienen una forma senoidal, en este
caso al observar la Fig.[2] vemos en la region central se tiene un pequefio valle, esta regién
estd asociada al escaldn de potencial y este pequeio valle es originado por un fenémeno
de tunelamiento [18]], es una regién en la que la probabilidad de encontrar la particula
en la region del escalén, mientras que en el pozo cuadrado las funciones de onda estidn
distribuidas en una regién como podemos ver a continuacién en la Fig. [0]a la Fig.[9] Para
n = 1 la funcién de onda presenta un solo 16bulo sin nodos internos (Fig. [6); para n = 2
aparece un nodo en el centro y dos l6bulos de signo opuesto (Fig. [7); para n = 3 hay
dos nodos internos y tres I6bulos alternados (Fig.[8); y para n = 4 se observan tres nodos
internos con cuatro 16bulos (Fig. [9). Cada funcién de onda tiene al igual que en el doble
pozo cuadrado n — 1 nodos y su forma refleja el incremento en energia y en el nimero de
oscilaciones con n, es decir a mayor nivel energético £, mayor cantidad de oscilaciones.
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3 SOLUCION PARA UNA PARTICULA

Funcion de onda paran = 1
W(x,An)

0.8

06

0.4
0.2r

1 | 1 1 1 1 | 1 1 ! 1 | ! ! 1 ! 1 1 ! ! 1 | Il 1 ! 1 | 1 1 x
0.5 1.0 1.5 20 2.5 3.0

Figura 6: Funcién de onda en un pozo cuadrado paran =1,V = 0,0 = 0.

Funcion de onda paran =2
wx,An)

05

0.5 1.0 1.5 2.0 2.5 3.0

-0.5F

Figura 7: Funcién de onda en un pozo cuadrado paran =2, V, = 0,0 = 0.
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3.1 Solucién para dos particulas 3 SOLUCION PARA UNA PARTICULA

Funcion de onda paran=3
wix,A,n)

0.5+

05

Figura 8: Funcién de onda en un pozo cuadrado paran = 3,V, = 0,0 = 0.

Funcién de onda paran =4
w(x,A,n)

-0.5F

Figura 9: Funcién de onda en un pozo cuadrado paran = 4,V, = 0,b = 0.

3.1. Solucion para dos particulas

En este punto se puede pasar a explicar la metodologia para el sistema de dos particulas
indistinguibles no interactuantes. Como ya se menciond, para hacer el andlisis de este tipo
de sistemas se puede partir de las soluciones construidas para una particula, de modo que
puede construirse la funcién de onda para dos particulas de la siguiente forma:

1
\I/+(l'1, 1‘2) = 72[\11(1’1, ZL‘Q) + \I/(QZQ, 1’1)] (345)
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3.1 Solucién para dos particulas 3 SOLUCION PARA UNA PARTICULA

1
V2
Donde ¥ (z1,22) y V_(xy,x2) representan las funciones simétrica y antisimétrica res-
pectivamente, donde W (1, x2) es el producto de las funciones de onda de cada particula
1 (21)e(xa), y W(xg, 1) es el producto de las funciones de onda de cada particula al
intercambiar las posiciones de cada una, es decir ¥ (x2)®9(z1). Una vez obtenidas estas
funciones de onda, es posible hacer el anélisis de las respectivas cantidades de interés del
sistema, tales como la entropia de Shannon para la densidad de pares, la entropia de Shan-
non para las marginales, la informacién mutua, el coeficiente de correlacion de Pearson, y
la varianza. Estas cantidades se construyen de la siguiente manera: como ya se menciono,
la entropia de Shannon es una medida de la incertidumbre o de localizacion de la densidad
de probabilidad, es decir, mide qué tan acumulada esta la densidad de probabilidad en una
region del espacio, si una densidad de probabilidad estd deslocalizada, quiere decir que
las probabilidades estdn mas distribuidas en el espacio, si estd localizada quiere decir que
esta estd concentrada en alguna region del espacio, es importante recordar que la funciéon
de onda tiene una interpretacion probabilistica, por lo que la conexion es bastante directa,
esta entropia para nuestro caso puede ser calculada de la siguiente manera:

U_(x1,29) = (W (21, 29) — W(xo, 271)]. (3.46)

Saq,acg = —/0 /0 ‘\I/i($17172)|21n ‘\I/i($17172)|2dl’1d1’2. (347)

Esto permitird analizar la localizacién o deslocalizacion de la densidad de pares del siste-
ma. De igual forma se puede definir la densidad reducida para calcular la entropia de las
densidades reducidas para asi comparar ambas densidades de probabilidad. Se define la
densidad reducida o marginal como:

p(r12) = /0 Wy (21, 72) Pday 9. (3.48)

Estas densidades reducidas son iguales para las densidades simétrica y antisimétrica dada
la ortonormalidad de las funciones de onda y es algo que solo ocurre en sistemas de
particulas no interactuantes como el que se esta planteando. Una vez definido esto, puede
calcularse la entropia de Shannon para esta distribucion.

Spy = — /7r p(x1) In p(xq)day. (3.49)
0

Como ya se menciond, la informacién mutua se define como una entropia relativa entre
distribuciones de mas de una variable. para este problema esta se calcula de la siguiente

forma: ( 2
T, T2
Ix://\p, 2y L) G Gy =28, — 8, .
|W (1, x2)|" In () p(s) r1dxe = 253, — Sy a9 (3.50)

El coeficiente de correlacion para este sistema se construye de la siguiente manera:

- (T122) — (21)(2) . (3.51)

Vi) — ()2 /(23) — (22)?

Donde los valores esperados se calculan de la siguiente forma:

<ZE1$2> :A /0 I1I2’\I/i(I1,I2>|2dxldI2. (352)
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3.1 Solucién para dos particulas 3 SOLUCION PARA UNA PARTICULA

s
(T12) = /0 T19p(71,2)d7y 5. (3.53)
Es necesario precisar que esto es lo mismo que haber hecho la siguiente integral:
s ™ 9
<ZE1> = /0 /0 $1|\I/i($1,$2)| dl’ldlEQ. (354)
Ya que si se realiza la integracion sobre x5 se obtiene la distribucién marginal sobre x4,
entonces cualquiera de las dos formas de escritura para el valor esperado de una sola de

las variables de posicién es vdlida (ecuacion[3.53|0[3.54)). Los términos en el denominador
de la ecuacién [3.51] son la desviacién estandar de la distribucion.
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4 VARIACIONES DEL ANCHO DEL POTENCIAL

4. Variaciones del ancho del potencial

Comencemos el andlisis con las entropias de Shannon para variaciones del ancho de la
barrera de potencial para distintos valores del escalén en la Fig. [I0] Se tomaron cuatro
estados del sistema, n; = lyny = 2;n = 1lyng =3;n; =2yny = 3;np = 2
y ny = 4; asi como 4 distintos valores del alto del escalén de potencial, V' = 1,V =
5,V =10,V = 20, para cada una de las graficas, se calcularon 20 puntos ya que el costo
computacional se elevaba al intentar calcular mds puntos, partiendo de b = 0.001 hasta
b=m/20.

Al hacer el cdlculo de las entropias para la densidad de pares se observa que para estados
ny =1yny =2;n = 2yny = 3 el comportamiento de la entropia de ambas densida-
des tanto simétrica como anti simétrica es igual, los estados restantes (n; = 1y ny = 3;
ny = 2y ny = 4.) presentan un comportamiento distinto en ambas densidades, aunque
en regiones parecen tocarse, en la mayoria de los casos es distinta y presenta mayor des-
localizacién la densidad anti simétrica. Esto puede explicarse pensando en la restriccion
ya mencionada en funciones anti simétricas, dando una restistriccion sobre la densidad de
probabilidad, haciendo que la probabilidad de encontrar a las dos particulas en el mismo
punto es cero y la probabilidad de encontrarlas cerca es muy pequeifia, teniendo efecto en
la localizacion de la densidad de pares ya que en promedio el espacio disponible para la
otra particula es menor, generando cierta clase de repulsion entre ellas a pesar de ser no
interactuantes.

Esto lleva a pensar que en los casos conn; = 1y no = 2;n7y = 2y ny = 3 dado que la
funcién simétrica estd igualmente localizada que la antisimétrica, debe tener un hueco. En
los casos limite, se observa que se recupera el valor de dos particulas libres en una caja,
esto se observa en el valor de la entropia en estos casos, ya que se obtiene el mismo valor
de entropia en ambos limites. De igual forma se observa que en cada gréfica se presentan
maximos y minimos, como ya se ha mencionado, la entropia de Shannon es una medida
de la localizacion o deslocalizacion de una densidad de probabilidad, en estos casos se
observa como al aumentar el ancho de la barrera de potencial, se tiene un fenémeno de
localizacién (disminucién de entropia) o deslocalizacidén (aumento de entropia).
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Ao ’
. A [T '
ii A ﬁ

Figura 10: Entropia de Shannon vs ancho de la barrera, curva roja: densidad simétrica,
curva azul: densidad antisimétrica, primera columna n; = 1y ny = 2, segunda columna
ny = 1yny = 3, tercera columna ny = 2y ny = 3, cuarta columna ny, = 2y ny = 4,
V = 1enlaprimera fila, V = 5 en la segunda fila, V' = 10 en la tercera fila, y V = 20 en
la dltima fila.

Analizando la primera columna de la Fig[I0|para el estado n; = 1y ny = 2 al aumentar
el ancho del escalon se observa que las densidades se localizan y el minimo a partir del
cual se empiezan a deslocalizar depende del valor de V', ya que al aumentar este valor, la
densidad se deslocaliza a mayores valores de b, viendo las densidades de pares para estos
estados.
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Figura 11: Densidad de la funcién de onda de dos particulas para el estado n; = 1y
ne = 2, V = 5 al cambiar el ancho de la barrera de potencial marcado por las lineas
blancas.

Se observa en la Fig. cémo al aumentar el ancho de la barrera de potencial (b) la
densidad de la funcién de onda se localiza en los extremos del doble pozo. El cambio en
este ancho puede verse en las lineas blancas en las figuras de las densidades, ya que estas
lineas blancas representan los limites de la barrera de potencial.

Al analizar la segunda columna de la Fig. (estado ny = 1y ny = 3), la densidad
simétrica se presenta mayor deslocalizacion mientras la densidad antisimétrica presenta
menores valores de entropia indicando asi menor deslocalizacion. Al realizar aumentos en
el alto del escalon de potencial, se observa que las entropias de ambas funciones tienden a
acercarse mas, al grado que para V' = 20 las curvas en una cierta region son muy cercanas.
La Fig. [[2) muestra la densidad de onda simétrica para el estado ny = 1y ny = 3 para
distintos valores del ancho de la barrera de potencial, es notable como la densidad de la
funcién de onda simétrica se deslocaliza conforme aumenta el valor del ancho del escaldn,
comportamiento que se refleja en el andlisis de la segunda columna de las graficas de la
entropia de la densidad de pares.
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Figura 12: Densidad de la funcién de onda simétrica de dos particulas para el estado
ny = 1, ng = 3y V = 5 al cambiar el ancho de la barrera de potencial marcado por las
lineas blancas.

Si ahora se observa la densidad antisimétrica en la Fig. [I3] se nota que en términos gene-
rales, la deslocalizacién que experimenta esta funcién es menor. Ahora resulta interesan-
te ver para ese estado el comportamiento de la densidad simétrica y anti simétrica para
V' = 20 en la Fig[T4]y Fig[I5]ya que en una regi6n en la que 0.16 < b < 1.10 la entropia
toma los mismos valores para ambas funciones.

Figura 13: Densidad de la funcién de onda antisimétrica de dos particulas para el estado
ny = 1, no = 3y V = 5 al cambiar el ancho de la barrera de potencial marcado por las
lineas blancas.
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Figura 14: Densidad de la funcion de onda simétrica de dos particulas para el estado
ny = 1,no = 3y V = 20 al cambiar el ancho de la barrera de potencial marcado por las
lineas blancas.

Figura 15: Densidad de la funcién de onda antisimétrica de dos particulas para el estado
ny = 1, ny = 3y V = 20al cambiar el ancho de la barrera de potencial marcado por las
lineas blancas.

Ambas funciones de onda tienen comportamientos similares en esa regién del espacio del
doble pozo, dando asi lugar a que la entropia de ambas tome el mismo valor. Para el estado
ny = 2, ny = 3 (tercera columna de la Fig. ﬂlj[) como ya se menciono tanto la densidad
simétrica como anti simétrica presentan el mismo comportamiento, pero parece ser que
el nimero de miximos y minimos de la entropia aumentan conforme V' aumenta, para
corroborar esto resulta importante visualizar las densidades de pares tanto simétrica como
antisimétrica para los distintos valores de V' en los cuales se encuentran esos maximos y
minimos. Para el primer valor de V" en la Fig. [I6]y Fig.
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Figura 16: Deslocalizacién de la densidad de la funcién de onda simétrica de dos particu-
las para el estado n; = 2, no = 3y V = 1 al cambiar el ancho de la barrera de potencial
marcado por las lineas blancas.

Figura 17: Deslocalizacién de la densidad de la funcién de onda antisimétrica de dos
particulas para el estado n; = 2, n, = 3y V = 1 al cambiar el ancho de la barrera de
potencial marcado por las lineas blancas.

Para la Fig.[16]y Fig.[T7]dado que el alto del escalon es pequeiio, el cambio en la localiza-
cién de densidad es muy pequeiio, por lo que la localizacién puede parecer imperceptible.
Si ahora visualizamos este cambio con mayores valores del alto del escalon, la localiza-
cién o deslocalizacion serdn mds evidentes, esto se refleja en la Fig. [I8]a Fig.2T]en la que
es notable el cambio en la localizacion de la densidad de la funcién de onda, ya que al
aumentar el ancho del escalén es evidente que esta densidad se deslocaliza.
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Figura 18: Deslocalizacién de la densidad de la funcién de onda simétrica de dos particu-
las para el estado n; = 2, ny = 3y V = 5 al cambiar el ancho de la barrera de potencial
marcado por las lineas blancas.

Figura 19: Deslocalizacion de la densidad de la funcién de onda antisimétrica de dos
particulas para el estado n; = 2, n, = 3y V = 5 al cambiar el ancho de la barrera de
potencial marcado por las lineas blancas.
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Figura 20: Deslocalizacion de la densidad de la funcién de onda simétrica de dos particu-
las para el estado n; = 2, ny = 3y V = 10 al cambiar el ancho de la barrera de potencial
marcado por las lineas blancas.

Figura 21: Deslocalizacién de la densidad de la funcién de onda antisimétrica de dos
particulas para el estado n; = 2, ng = 3y V' = 10 al cambiar el ancho de la barrera de
potencial marcado por las lineas blancas.

Ahora hay que observar cémo ocurre la localizacién de estos estados. En la Fig22]a la
Fig[25|podemos observar la localizacion de ambas densidades de la funcién de onda tanto
simétrica como antisimétrica para un valor fijo de V' = 5 en la Fig[22]y la Fig23|y para
un valor fijo de V' = 10 en la Fig[24]y la Fig 23]
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Figura 22: Localizacién de la densidad de la funcién de onda simétrica de dos particulas
para el estado n; = 2, ng = 3y V = 5 al cambiar el ancho de la barrera de potencial
marcado por las lineas blancas.

Figura 23: Localizacion de la densidad de la funcién de onda antisimétrica de dos particu-
las para el estado n; = 2, no = 3y V = 5 al cambiar el ancho de la barrera de potencial
marcado por las lineas blancas.
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Figura 24: Localizaciéon de la densidad de la funcién onda simétrica de dos particulas
para el estado n; = 2, ny = 3y V' = 10 al cambiar el ancho de la barrera de potencial
marcadas por las lineas blancas.

Figura 25: Localizacién de la densidad de la funcién de onda antisimétrica de dos particu-
las para el estado n; = 2, ny = 3y V = 10 al cambiar el ancho de la barrera de potencial
marcado por las lineas blancas.

En estas figuras (Fig[22] a 1a Fig[25)) se observa que el comportamiento de la densidad
de la funcién de onda, tanto simétrica como antisimétrica es consistente con lo reflejado
en la entropia de Shannon, aunque es pertinente aclarar los picos de la entropia, como
ya se hizo mencidn, estos se tomaron 20 puntos para realizar estas graficas ya que el
costo computacional aumentaba muchisimo, de modo que estos picos pueden deberse a
la falta de valores para graficar, ya que 20 puntos podrian no ser suficientes para suavizar
estas graficas, de igual forma, estos podrian deberse a errores numéricos generados por
Mathematica, ya que como se menciond, el costo computacional aumenta bastante debido
a que el calculo de las entropias de Shannon es bastante costoso, por lo que esto podria
inducir errores pequefios en los calculos llevando a tener picos en la localizacion o en la
deslocalizacién de la funcién de onda pudiendo no reflejar el comportamiento en ciertos
estados, como puede ser el estado n; = 2, no = 4 que se discute a continuacion.
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Para el estado n; = 2, ny = 4 graficado en la Fig. a la Fig. se observa que el
comportamiento es muy similar en ambas entropias, de modo que se puede pensar que
son similares las densidades, el problema es que al aumentar el ancho del escalén de
potencial y hacerlo tender al caso limite en que b = 7, se debe recuperar el sistema de 2
particulas libres no interactuantes en una caja, es decir, los valores de entropifaen b ~ 0y
b ~ m deberian ser los mismos o muy cercanos, pero esto no ocurre y posiblemente esto
debe a errores numéricos generados por los métodos para calcular la entropia de Shannon
como ya se menciond, si bien la densidad de la funcién de onda tanto simétrica como
antisimétrica no presentan irregularidades, el cédlculo de la entropia de Shannon refleja
estos errores numéricos. En la Fig. 26] y Fig. estan graficadas las densidades de la
funcion de onda para V' = 1y tal como en los casos anteriores el valor del alto del escalon
no es el suficiente para mostrar un comportamiento de localizacion o deslocalizacidn, pero
es algo que no se ve reflejado en la primera grifica de la cuarta columna de la Fig. [I0]
de modo que podemos decir que existen ciertos errores numéricos asociados al célculo de
la entropia de Shannon. Para casos en que el alto de la barrera de potencial es mayor, es
mas notable el efecto de localizacion de las densidades de pares, para esto, en la Fig.
y Fig. [29| se grafican las densidades de la funcion de onda para V' = 10 para asi poder
visualizar el comportamiento ya mencionado.
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Figura 26: Densidad de la funcién de onda simétrica de dos particulas para el estado
ny = 2,ng =4y V =1 al cambiar el ancho de la barrera de potencial marcado por las
lineas blancas.

Figura 27: Densidad de la funcién de onda antisimétrica de dos particulas para el estado
ny = 2,ng =4y V =1 al cambiar el ancho de la barrera de potencial marcado por las
lineas blancas.
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Figura 28: Densidad de la funcién de onda simétrica de dos particulas para el estado
ny = 2,ne =4y V = 10 al cambiar el ancho de la barrera de potencial marcado por las
lineas blancas.

Figura 29: Densidad de la funcion de onda antisimétrica de dos particulas para el estado
ny = 2,n9 =4y V = 10 al cambiar el ancho de la barrera de potencial marcado por las
lineas blancas.

4.1. Densidad reducida

En la Fig. [30] se tiene una gréfica de las entropias de las densidades reducidas para cada
una de las funciones de onda y para las variaciones del ancho del potencial.
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Figura 30: Entropia de las densidades reducidas vs ancho de la barrera, primera columna
ny = 1yng = 2, segunda columna n; = 1y ny = 3, tercera columna ny = 2y ny = 3,
cuarta columna ny = 2y ny = 4, V = 1 en la primera fila, V' = 5 en la segunda fila,
V =10 en la tercera fila, y V = 20 en la ultima fila.

Estas densidades reducidas para funciones simétricas y antisimétricas son iguales debido a
las propiedades de ortonormalidad de las funciones de una particula. Esto solo es posible
en sistemas no interactuantes. Si se observa la primera columna el comportamiento es
parecido al de las densidades de pares. Una pregunta natural que puede surgir de ver
el comportamiento tanto de la densidad de pares como de la densidad reducida, es si
comparten los maximos y los minimos, para esto hay que ver las graficas para cada uno
de los casos.

Gréfica de entropia en funcion de ancho de potencial n=1, m=2, v=1 Entropia de la densidad reducida n=1, m=2, v=1
Entropia(b)

Entropia(b)

0995
0990
0985

0980

0975+

0970

Figura 31: Entropia de la densidad de pares (curva azul) y de la densidad reducida (curva
roja)n; = 1,ny, =2y V =1.

Para el caso presentado en la Fig[31] parece ser que comparten solo el méximo de la curva,
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y el minimo en el caso de la densidad de pares estd desplazado a un valor ligeramente
mayor de b. Pasando al caso para V = 5 en la Fig. [32] es notable que tanto los méximos
como los minimos de la funcién entropia tanto para las densidades de pares como la
densidad reducida, son los mismos. Este comportamiento se repite para los demds valores
del alto del escalén de potencial (Fig.[33]y Fig. [34).

Entropia de las densidades de pares n=1 m=2 V=5 Entropia de la densidad reducida n=1, m=2, v=5
Entropia(b)
1,051

b L L L L Ly
05 10 15 20 25 3.0

Figura 32: Entropia de la densidad de pares (curva azul) y de la densidad reducida (curva
roja)n; = 1,n, =2y V =5.

Grafica de entropia en funcion de ancho de potencial n=1, m=2, v=10 Entropia de la densidad reducida n=1, m=2, v=10
Entropia(b) . L

Entropia(b)
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Figura 33: Entropia de la densidad de pares (curva azul) y de la densidad reducida (curva
roja)n; = 1,n, =2y V = 10.

Entropia de la densidad reducida n=1, m=2, v=20
Grafica de entropia en funcién de ancho de potencial n=1, m=2, v=20 Entropia
Entropia(b)
10
08

06

04

0.2

Figura 34: Entropia de la densidad de pares (curva azul) y de la densidad reducida (curva
roja) del estadon; = 1,1, =2y V = 20.
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Para el estado n; = 1,ny = 3, a simple vista parece ser que el comportamiento de las
densidades de pares difiere de la densidad reducida (Fig. [35)), pero al aumentar la escala
de visualizacion, la densidad de pares antisimétrica tiene comportamiento similar a la
densidad reducida, que si bien no comparte los méximos ni los minimos, estos tienden a
ocurrir en valores similares de 0, Fig. En la Fig. [37| se observa la localizacion de la
funcién de onda al rededor de valores de 0.78 < b < 1.73.

Grafica de entropia en funcidn de ancho de potencial n=1, m=3, v=1

Entropia(b) Entropfa(b)

180F 1006
1751 il 004:
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Entropia de la densidad reducida n=1, m=3, v=1
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Figura 35: Entropia de la densidad de pares (curva azul) y de la densidad reducida (curva

roja) del estadon; = 1,ny, =3y V = 1.

Grafica de entropia en funcion de ancho de potencial n=1, m=3, v=1
Entropa(b) Entropia(b)
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Figura 36: Entropia de la densidad de pares anti simétrica (curva azul) y de la densidad
reducida (curva roja) del estadon; = 1,n, =3y V = 1.

Grafica de entropia en funcién de ancho de potencial n=1, m=3, v=5
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Figura 37: Entropia de la densidad de pares (curva azul) y de la densidad reducida (curva

roja) del estadon; = 1,n, =3y V = 5.
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Entropia anti simétrica en funcion de ancho de potencial n=1, m=3, v=5 Entropia de la densidad reducida n=1, m=3, v=5
Entropfa(b) Entropia(b)
170 1.05 P
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Figura 38: Entropia de la densidad de pares anti simétrica (curva azul) y de la densidad
reducida (curva roja) del estadon; = 1,no =3y V = 5.

Figura 39: Localizacion de la densidad de onda anti simétrica de dos particulas para el
estadony = 2, ny =3y V = 5 para valores 0.78 < b < 1.73.

Se observa que el comportamiento de la funcién de onda es consistente con lo reflejado
en la entropia de Shannon, para casos en que V' = 10,V = 20 pasa algo similar, el
comportamiento de la entropia reducida es similar al observado para la densidad de pares
antisimétrica.
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a de entropia en funcidn de ancho de potencial n=1, m=3, v=10 Entropia de la densidad de pares n=1, m=3, v=10
) Entropia
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Figura 40: Entropia de la densidad de pares anti simétrica (curva azul) y de la densidad
reducida (curva roja) del estadony = 1,n, =3y V = 10.

Gra le entropia en funcién de ancho de potencial n=1, m=3, v=20 Entropia de la densidad de pares n=1, m=3, v=20
Entrof } Entropia
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Figura 41: Entropia de la densidad de pares anti simétrica (curva azul) y de la densidad
reducida (curva roja) del estadony = 1,n, =3y V = 20.

Pasando al siguiente estado n; = 2,no = 3 cuyas entropias se encuentran en la Figi2)a
la FigFE] se observa lo mismo que en el caso n; = 1, ny = 2, es decir, el comportamiento
de la entropia de la densidad de pares tanto simétrica como antisimétrica es andlogo al
comportamiento de la densidad reducida, esto se refleja en las siguientes graficas, ademds
los maximos y minimos se encuentran en los mismos puntos. Es necesario recordar
que los picos presentados en las graficas estan inducidos por la cantidad de puntos
tomados para hacer el analisis.

Grafica de entropia en funcién de ancho de potencial n=2, m=3, v=1 i Entropia de la densidad reducida n=2, m=3, v=1
Entropia(b) Entropia(b)
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Figura 42: Entropia de la densidad de pares y reducida del estadon; = 2,1y =3y V = 1.
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Grafica de entropia en funcion de ancho de potencial n=2, m=3, v=5 i Entropia de la densidad reducida n=2, m=3, v=5
Entropia(b) Entropia

175

170

1651

L ! L L I | L p P TN R Y TR S B O R T R 1
05 1.0 15 20 25 30 05 1.0 15 20 25 30

Figura 43: Entropia de la densidad de pares y reducida del estadon; = 2,1, =3y V = 5.

Grafica de entropia en funcién de ancho de potencial n=2, m=3, v=10 Entropia de la densidad reducida n=2, m=3, v=10
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Figura 44: Entropia de la densidad de pares y reducida del estado n; = 2,n, = 3y
V = 10.

Gréfica de entropia en funcién de ancho de potencial n=2, m=3, v=20 Entropia de la densidad reducida n=2, m=3, v=20
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Figura 45: Entropia de la densidad de pares y reducida del estado n; = 2,n, = 3y
V = 20.

Para el estado n; = 2, ny = 4 como ya se menciond, existen ciertos problemas numéricos
derivados del cdlculo de la entropia en los tltimos valores de b, de modo que las siguientes
gréficas presentadas de la entropia de pares simétrica y antisimétrica estan recortadas (Fig.
H6] a la Fig. @9) de modo que no se muestran los problemas numéricos asociados a este
estado y a esos respectivos valores del ancho del escalon de potencial, pero el comporta-
miento de estas densidades es consistente en ciertas regiones, lo cual se puede comprobar
observando las densidades de pares de la funcién de onda y su respectivo comportamien-
to. Se observa en la Fig. [50|a la Fig. [57) que la localizacién comienza a ser mds evidente
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para valores de V' cada vez mayores, para valores menores parece estar sucediendo que
la energia asociada a ese estado es mayor que el alto del escalon de potencial, generando
que sea menos evidente la localizacion.

Grafica de entropia en funcién de ancho de potencial n=2, m=4, v=1 Entropia de la densidad reducida n=2, m=4, v=1
Entropia(b) Entropia
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0974
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Figura 46: Entropia de la densidad de pares y reducida del estadon; = 2,n, =4y V = 1.

Grafica de entropia en funcidn de ancho de potencial n=2, m=4, v=5 Entropia de la densidad reducida n=2, m=4, v=5
Entropiaib) Entropia

Figura 47: Entropia de la densidad de pares antisimétrica y reducida del estado n; =
2, N9 = 4 y V =5.

Grafica de entropia en funcién de ancho de potencial n=2, m=4, v=10 Entropia la densidad reducida n=2, m=4, v=10
Entropia(b) Entropia
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Figura 48: Entropia de la densidad de pares y reducida del estado n; = 2,ny, = 4y
V = 10.
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Gréfica de entropia en funcién de ancho de potencial n=2, m=4, v=20 Entropia de la densidad reducida n=2, m=4, v=20
Entropia(b} Entropia
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Figura 49: Entropia de la densidad de pares antisimétrica y reducida del estado n; =
2,TL2 :4yV:20

Figura 50: Densidad de onda simétrica de dos particulas para el estado n; = 2, no =4y
V=1

Figura 51: Densidad de onda antisimétrica de dos particulas para el estado ny = 2, ny = 4
yV =1
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V:

Figura 53: Densidad de onda antisimétrica de dos particulas para el estado ny = 2, ny = 4
yV =5.
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Figura 54: Densidad de onda simétrica de dos particulas para el estado n; = 2, ny =4y
V = 10.

Figura 55: Densidad de onda antisimétrica de dos particulas para el estado ny = 2, ny = 4
y V =10.
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Figura 56: Densidad de onda simétrica de dos particulas para el estado n; = 2, ny =4y
V = 20.

Figura 57: Densidad de onda antisimétrica de dos particulas para el estado ny, = 2, ny = 4
y V = 20.

4.2. Varianza
Otra medida de deslocalizacién de una densidad de probabilidad, es la varianza, y dado
que se busca comparar las medidas de teoria de la informacién con otras medidas estadis-

ticas es necesario calcular la varianza y preguntar ;qué nos dice la varianza para cada uno
de estos casos? En la Fig. [58se pueden observar las varianzas para cada estado.
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Figura 58: Varianza vs ancho de la barrera, curva roja: densidad simétrica, curva azul:
densidad antisimétrica, primera columna n; = 1y ny = 2, segunda columnan; = 1y
ne = 3, tercera columna ny; = 2y ny = 3, cuartacolumnan; =2yn, =4,V =1enla
primera fila, V' = 5 en la segunda fila, V' = 10 en la tercera fila, y V' = 20 en la dltima
fila.

Viendo la primera columna de la Fig.|58|1a varianza muestra que la densidad se deslocali-
za conforme aumenta b, pero ;es esto cierto?, no necesariamente una forma de comprobar
esto es viendo la Fig.[I0] en esta figura se grafican las entropias de pares de varios estados
de la funcién de onda, al observar la primera columna asociada al estadon; = 1y ny = 2
se observa que conforme aumenta el valor de b la densidad se localiza y cuando b alcanza
un valor cercano a 7 se deslocaliza la densidad, y la varianza esta diciendo lo contrario.
La segunda columna de la Fig. [58| parece estar indicando que la densidad se deslocaliza,
para los primeros valores de b, pero esto no necesariamente es cierto ya que si bien en la
densidad antisimétrica en el estado n; = 1, ny = 3 se obseva una deslocalizacion, esto no
es cierto para la densidad simétrica (ver Fig. [10). Ahora si se observa la Fig.[30]de la en-
tropia de la densidad reducida, se puede notar que esta capta mejor el comportamiento de
la densidad de la funcién de onda a pesar de reflejar un comportamiento similar solamente
para la densidad antisimétrica.

4.3. Informacion mutua

Como ya se menciond, la informacién mutua, es una medida de la correlacion entre dos
variables. En la Fig. |59 se observa que conforme b aumenta a partir de cero en el caso
ny = 1y ny = 2 la correlacion entre las dos densidades es la misma tal y como se ha
observado en las entropias de pares, este valor de informacién mutua crece rapidamente,
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y al alcanzar un maximo disminuye rapidamente, pero conforme el valor de V' aumenta
parece que el valor mdximo se mantiene constante en mayor parte del intervalo. Para el
ny = 1y ny = 3, este valor sigue siendo positivo pero el comportamiento es distinto, si
bien hay valores de b en los que la informaciéon mutua tiene el mismo valor, en términos
generales la densidad anti simétrica posee mayor correlacion. Observando la segunda co-
lumna de la Fig.[59] la correlacién de la funcién anti simétrica disminuye en tanto que la
correlacion de la funcion simétrica aumenta. La funcion antisimétrica alcanza un minimo
y comienza a aumentar hasta llegar a un maximo, indicando un aumento en la correlacién
y disminuyendo hasta tomar un valor similar al obtenido para b = 0, y como ya se mencio-
nd en secciones anteriores, esto es consistente con recuperar el sistema de dos particulas
confinadas en una caja, y parece que las posiciones del minimo y el méximo se desplazan
hacia b cada vez mayores conforme V' crece. De igual modo se puede ver que el compor-
tamiento de la densidad simétrica es mads complicado aumentando el nimero de méximos
y minimos conforme V' aumenta. Para el estado n; = 2y ny = 4 como ya se menciond se
tienen ciertos problemas numéricos los cuales hacen que el rango de visualizacion se haya
tenido que recortar, pero en términos generales se tiene un comportamiento en el que la
correlacion es igual para ambas densidades en cierta region, pero aumenta la correlacion
de la funcién anti simétrica a partir de cierto valor de b que es diferente para todos los
valores de V.

Figura 59: Informacién mutua vs ancho de la barrera, curva roja: densidad simétrica, curva
azul: densidad antisimétrica, primera columna n; = 1y ny, = 2, segunda columna n; = 1
y no = 3, tercera columna n; = 2y ny = 3, cuartacolumnan; =2yny =4,V =1len
la primera fila, V' = 5 en la segunda fila, V' = 10 en la tercera fila, y V' = 20 en la tltima
fila.
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4.4. Coeficiente de correlacion

Una vez dicho esto, una pregunta natural que surge de observar el comportamiento de la
informacién mutua es ;como se comporta el coeficiente de correlacion para este sistema?
;tiene un comportamiento similar a la informacién mutua? En la Fig. [60] se encuentran
graficados los coeficientes de correlacion para los distintos estados. Se observa en la Fig.
@ que en el caso de los estados ny = 1, ny = 2y ny = 1 ny = 3 el valor absoluto del
coeficiente de correlacién es el mismo, pero el comportamiento de forma general difiere
a la informacién mutua. En el caso de los estados ny = 2, ny = 3yn; = 2, ny = 4
la correlacidn lineal calculada es cero para estos estados, pero no necesariamente implica
que no haya correlacién, ya que la informacién mutua como medida de correlacién parece
detectar mejor esta que la correlacion lineal.
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Figura 60: Coeficiente de correlacion lineal vs ancho de la barrera, curva roja: densidad
simétrica, curva azul: densidad antisimétrica, primera columna n; = 1y ny = 2, segunda
columna n; = 1y ny = 3, tercera columna n; = 2y ny = 3, cuarta columnan; = 2y
ne = 4,V = 1en la primera fila, V' = 5 en la segunda fila, V = 10 en la tercera fila, y
V' = 20 en la ultima fila.
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5. Variaciones del alto del potencial

En la Fig. |61] se tienen las entropias de Shannon para las variaciones del alto del escalon
de potencial.

Figura 61: Entropia de Shannon vs alto de la barrera, curva roja: densidad simétrica, curva
azul: densidad antisimétrica, primera columna n; = 1y ny = 2, segunda columnan; = 1
y ny = 3, tercera columna ny = 2y ny = 3, cuarta columna n; = 2y ny =4, b = 0.001
en la primera fila, b = 1 en la segunda fila, b = 2 en la tercera fila, y b = 3 en la dltima
fila.

A medida que se incrementa la altura del escalon de potencial, se observa un comporta-
miento diferenciado en la entropia de las densidades de pares, dependiendo del valor del
pardmetro b y del par de estados considerados. Para el caso n; = 1y ny = 2, se aprecia
que, con valores de b = 0.001, la entropia tiende a disminuir conforme aumenta la altura
del potencial pero esta disminuye a partir de valores cercanos a 1072, lo que sugiere una
tendencia a la localizacién de las densidades pero casi imperceptible (Fig. [62)). En con-
traste, cuando b aumenta a 1 o a 2 la disminucién de entropia es mds evidente, haciendo
notorio el efecto de localizacidn, y si b se aproxima a 7 (por ejemplo, b = 3), la entropia
crece, indicando una mayor deslocalizacion, pero en el mismo rango de valores que la
entropia para el menor valor de b.

Para los estados en la primera y tercera columna de la Fig.[61{(n; =1y nys =2y n; =2
y no = 3) ambas densidades presentan un comportamiento igual ante variaciones del
alto del escal6n, manteniendo valores de entropia equivalentes, aunque no necesariamente
evoluciones idénticas. Esta similitud sugiere que las densidades de pares en estos casos
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responden de manera andloga a cambios en el potencial, posiblemente debido a la cercania
energética de los estados implicados.

En los casos en la segunda y cuarta columna de la Fig. [6I](ny = 1y ny = 3yn; = 2
y ny = 4), el comportamiento de la entropia difiere significativamente entre las densida-
des simétrica y antisimétrica. Para b = 0.001, ambas densidades presentan una entropia
creciente a partir del orden de 1073, aunque la simétrica (asociada a la linea roja en las
graficas) se encuentra mds deslocalizada. Para b = 1y b = 2, se observa un aumento en
la entropia, es decir, una deslocalizacion hasta aproximadamente V' = 8, punto a partir
del cual la densidad simétrica comienza a localizarse. En el caso antisimétrico, para b = 1
la localizacion ocurre en el mismo intervalo de v, mientras que para b = 2 se anticipa
alrededor de v = 4.

En la tercera columna de la Fig. [6I]n; = 2 y ny = 3, se repite el patrén observado en
ny = 1lynyg = 2:parab = 0.001 y b = 3, la entropia tiende a aumentar con el alto del
potencial, mientras que para b = 1y b = 2 se identifica una fase inicial de deslocalizacién
seguida de una localizacion hacia V' = 8. Este cambio puede deberse a que, una vez que
el potencial supera la energia del estado, las funciones de onda tienden a confinarse mds,
reflejandose en una disminucién de la entropia.

Por dltimo, en el estado n; = 2y ny = 4 en la cuarta columna de la Fig. [61]la entropia
se mantiene constante para b = 0.001, con valores idénticos en ambas densidades. Para
b = 1, ambas densidades aumentan su entropia con el potencial, pero la simétrica se des-
localiza en mayor medida. En b = 2, la densidad simétrica comienza mds localizada para
bajos valores de v, pero se deslocaliza conforme este crece, al igual que la antisimétrica.
En el caso de b = 3, ambas densidades muestran nuevamente un comportamiento cons-
tante. ;Son estas observaciones consistentes con la densidad de la funcién de onda para el
respectivo estado?

Para el estado n; = 1, no = 2 la variacion en la entropia es muy pequefia como ya se hizo
mencion, se puede visualizar la densidad para comprobar esto.

Figura 62: Densidad de onda simétrica para el estado n; = 1, n, = 2y ancho del escalén
b= 0.001.
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5 VARIACIONES DEL ALTO DEL POTENCIAL

Figura 63: Densidad de onda simétrica para el estado n; = 1, ny = 2y ancho del escalén
b=1.

Se nota en la Fig. [62] que el efecto de localizacién es practicamente imperceptible por
lo delgado de la barrera, y es consistente con lo reflejado en la entropia, el cambio es tan
pequefio que podria decirse que es constante. Si se aumenta el valor del ancho del escalon,
este efecto de localizacion es cada vez mds evidente, como podemos observar en la Fig.

63]y Fig.[64]

Figura 64: Densidad de onda simétrica para el estado n; = 1, ny = 2y ancho del escalén
b=2.
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Figura 65: Densidad de onda simétrica para el estado n; = 1, ny = 2y ancho del escalén
b= 3.

Para el primer estado en el caso de b = 3, se tiene algo muy similar a b = 0.001 (Fig.
[62)), 1a deslocalizacion es imperceptible ya que es equivalente a tener dos particulas en
una caja tal como se refleja en la Fig. [65]

Para el estado n; = 1, ny = 3 las densidades de la funcién de onda graficadas en la Fig.
a la Fig.[72|se comportan de forma similar, para b = 0.001 es imperceptible la localiza-
cién, y ambas densidades parecen tener entropias constantes, tanto para el caso b = 0.001
como parab = 3. Enb = 1y b = 2, el comportamiento es distinto, a continuacion se
muestran las densidades para estos dos valores de b tanto para el caso simétrico como el
antisimétrico.

Figura 66: Deslocalizacion de la funcion de onda simétrica para el estado ny = 1, ny = 3
y ancho del escalén b = 1.
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Figura 67: Deslocalizacion de la funcién de onda simétrica para el estado ny = 1, ny = 3
y ancho del escalén b = 1.

Figura 68: Deslocalizacién de la funcién de onda anti simétrica para el estado n; = 1,
no = 3y ancho del escalén b = 1.
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Figura 69: Localizacion de la funcién de onda anti simétrica para el estadony = 1, ny = 3
y ancho del escalén b = 1.

Figura 70: Deslocalizacion de la funcién de onda simétrica para el estado ny = 1, ny = 3
y ancho del escalén b = 2.
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Figura 71: Localizacién de la funcidén de onda simétrica para el estadony = 1, no = 3y
ancho del escalén b = 2.

Figura 72: Localizacién de la funcion de onda anti simétrica para el estadon, = 1, ny = 3
y ancho del escalén b = 2.

Se tiene que la entropia de Shannon obsevada en la Fig.|60|es consistente con lo observado
en la localizacion o deslocalizacién de la densidad de la funcién de onda en los estados ya
mostrados en la Fig.[62]a la Fig.[72] En el caso n; = 2, ny = 3 se tiene un comportamiento
andlogo al caso n; = 1, ny = 2 en el que la entropia de ambas densidades es igual. Para
el caso ny = 2, ny = 4 las densidades se comportan de la siguiente manera.
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5 VARIACIONES DEL ALTO DEL POTENCIAL

Figura 73: Localizacién de la funcion de onda simétrica para el estado ny = 2, no =4y
ancho del escal6én b = 1.

Figura 74: Deslocalizacién de la funcién de onda simétrica para el estado n; = 2, ny, = 4
y ancho del escalén b = 1.
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5 VARIACIONES DEL ALTO DEL POTENCIAL

Figura 75: Deslocalizacion de la funcién de onda anti simétrica para el estado n; = 2,
no = 4y ancho del escalén b = 2.

Figura 76: Localizacion de la funcion de onda anti simétrica para el estado ny = 2, ny =4
y ancho del escalén b = 2.
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5.1 Densidad reducida 5 VARIACIONES DEL ALTO DEL POTENCIAL

Figura 77: Localizacién de la funcién de onda simétrica para el estado ny = 2, no = 4y
ancho del escalén b = 2.

5.1. Densidad reducida

Tal como se hizo para variaciones en el ancho del escaldn, se busca comparar la entropia
de la densidad de pares con la entropia de la densidad reducida. A continuacién se grafican
estas entropias en la Fig.

S IO O |
\

Figura 78: Entropia de las densidades reducidas vs alto de la barrera, primera columna
ny = 1y ny = 2, segunda columna n; = 1y ny = 3, tercera columna ny = 2y ny = 3,
cuarta columna ny = 2y ny = 4, b = 0.001 en la primera fila, b = 1 en la segunda fila,
b = 2 en la tercera fila, y b = 3 en la dltima fila.
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5.2 Varianza 5 VARIACIONES DEL ALTO DEL POTENCIAL

Se observa que estas entropias presentan un comportamiento similar al obtenido en la en-
tropia de la densidad reducida al realizar variaciones del ancho de la barrera de potencial
Fig.[30jaunque no la misma evolucién, ambos casos presentan comportamientos similares
a la densidad de pares antisimétrica compartiendo maximos en los casos en los que esta
variacion de entropia es notable, en los casos en los que se tiene una variacion lineal de
la entropia tanto creciente como decreciente no se puede establecer un criterio de simila-
ridad a una densidad de pares o a otra, ya que si bien ambas comparten comportamientos
crecientes a orden muy bajo, no podria decirse entonces que la densidad reducida y la anti
simétrica o simétrica son similares. Esta similaridad mencionada se da en casos en los que
b =1y b= 2excepto para el estado n; = 2, ny, = 4 para b = 2, este caso es la excepcion,
ya que la densidad reducida no se comporta como la densidad simétrica ni anti simétrica.

5.2. Varianza

Figura 79: Varianza vs alto de la barrera

La varianza ante variaciones en el alto de la barrera de potencial tampoco refleja el com-
portamiento observado en las densidades de pares de la funcién de onda (Fig.[79). En la
primera columna la varianza estd diciendo que se tiene el comportamiento contrario al
observado en la densidad reducida y en las densidades de pares, en la cuarta fila asociada
a un valor de b ~ 7 el aumento en la varianza se da al mismo orden en el que se pre-
sentan variaciones en la entropia de Shannon al variar el alto de potencial para ese valor
fijo de b (107?), de modo que podriamos decir que tanto la varianza como la entropia es
constante. En la segunda columna solo difieren la segunda y tercera gréfica, mostrando
que la varianza detecta deslocalizacién cuando lo presentado en términos de la entropia
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5.3 Informacion mutua 5 VARIACIONES DEL ALTO DEL POTENCIAL

de Shannon y la densidad de pares es distinto a esto, se tienen intervalos de localizacion
y deslocalizacién y es algo que la varianza no detecta. En la tercera columna la primera,
segunda y tercer gréfica difieren por completo de lo observado en la entropia de Shannon,
y coincide en la dltima gréfica como ya se hizo mencién. En la cuarta columna coinciden
solamente la primera y ultima graficas, de modo que podria pensarse que tal como en el
caso anterior para variaciones del ancho del escalon, que la varianza de esta distribucion
no logra detectar la localizacion o deslocalizacion de la densidad.

5.3. Informacion mutua

Figura 80: Informacién mutua vs alto de la barrera , curva roja: densidad simétrica, curva
azul: densidad antisimétrica, primera columna n; = 1y ny = 2, segunda columnan; = 1
y ny = 3, tercera columna ny = 2y ny = 3, cuarta columnany = 2y ny = 4.

La informacién mutua en la Fig. [80] muestra que al aumentar V', en la primera columna,
es decir, el estado n; = 1y ny = 2, la correlacion crece, parab = 1y b = 2 en la segunda
y tercera fila de la Fig. [80] se tiene un incremento de correlacién bastante grande en el
momento en que la densidad de pares se localiza en el sistema. Paran; = 1y ny = 3
en la segunda columna, de la primera y udltima grafica puede decirse que la correlacion
es constante, pero para b = 1 en la segunda fila se tiene una pérdida en la correlacion
bastante abrupta en el rango en que se deslocaliza la densidad de pares (Fig. [6I) y para
b = 2 la correlacién en la densidad anti simétrica es mayor que en la densidad simétrica, y
esta correlacion tal como ya se menciond aumenta o disminuye en los valores en los que la
densidad de pares se localiza o deslocaliza respectivamente y este andlisis es andlogo para
los otros 2 estados, conforme se localiza la densidad de pares la informacién mutua crece
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5.4 Coeficiente de correlacion 5 VARIACIONES DEL ALTO DEL POTENCIAL

y conforme esta densidad se deslocaliza se pierde correlacion, es decir, la informacion
mutua decrece. ;Este comportamiento se ve reflejado en el coeficiente de correlacion?

5.4. Coeficiente de correlacion

Figura 81: Coeficiente de correlacion lineal vs alto de la barrera, curva roja: densidad
simétrica, curva azul: densidad antisimétrica, primera columna n; = 1y ny, = 2, segunda
columna n; = 1y ny = 3, tercera columna n; = 2y ny = 3, cuarta columnan; = 2y
Ng = 4

Tal como se vio en la seccién anterior en la Fig.[59] para estados impares de la funcién de
onda (ny = 1, ny = 2y ny = 2, ny = 3) el valor absoluto del coeficiente de correlaciéon
€s mayor a cero, y es igual para ambos casos, y en casos del primer estado en la primera
columna de la Fig.|81|en valores de b = 1y b = 2 (segunda y tercera fila Fig. se tiene
una correlacioén o anti correlacion casi perfecta donde |7| ~ 0.98. Enel cason; = 2y
ne = 3 en la tercera columna de la Fig. enb = 1y b = 2 se pierde correlacién al
aumentar el valor del alto del potencial, pero esto es contradictorio a lo observado en la
densidad de pares, ya que al confinar las particulas se gana correlacion, y por lo tanto esta
pérdida de correlacion es contradictoria a lo observado. Para estados pares de la densidad
de pares tales como n; = 1, ny = 3y ny = 2, no = 4 nuevamente no se esta detectando
correlacidn lineal en estos estados, indicando que posiblemente la paridad juega un papel
fundamental en la deteccidn de correlacion en este sistema.
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6 CONCLUSIONES

6. Conclusiones

A lo largo de este trabajo se resolvid la Ec. de Schrodinger independiente del tiempo en el
doble pozo cuadrado de potencial para una particula para dar paso a construir la solucién
para dos particulas no interactuantes confinadas en este sistema, y se ha encontrado que la
paridad de la funcién de onda, juega un papel importante en la deteccion de correlacion li-
neal en el sistema, ya que al momento de calcularla, no fue posible detectarla para estados
pares, y queda la pregunta abierta ;por qué sucede esto? dando lugar asi a mostrar que la
informacién mutua en este contexto detecta de mejor forma las correlaciones entre varia-
bles. De igual forma, la entropia de Shannon calculada para la densidad de pares captura
de mejor forma las transiciones entre localizacién y deslocalizacion tanto al variar b como
al variar V' comparada con la varianza de la distribucién de la funcién de onda. En par-
ticular la densidad antisimétrica posee una restriccion a lo largo de la diagonal z; = o,
esto debido al principio de exclusién de Pauli [12]], impidiendo que en las regiones en las
que la posicién de ambas particulas sea igual que los picos de densidad tengan una re-
gién prohibida entre ellos, lo que se traduce en una mayor localizacién, y por lo tanto una
caida en la entropia que es algo que se observo en los casos pares de la funcién de onda,
la entropia antisimétrica mostraba, en la gran mayoria de los casos, valores menores que
los de la entropia simétrica. En este proyecto, se han analizado las medidas de teoria de
correlacidn para poder comparar como es que se obtiene informacién sobre el estado de
la funcién de onda al variar los pardmetros del sistema, todo este andlisis resalta la venta-
ja de las medidas de teoria de la informacién en este sistema para detectar correlaciones
de origen cuéntico, y como estas medidas brindan mayor claridad sobre los estados de la
densidad de la funcién de onda y como los cambios en los pardmetros del sistema inducen
cambios en la localizacién o deslocalizacion de la densidad de pares. El préximo proyec-
to contemplaré la construccion de la funciéon de Wigner para este sistema para hacer un
andlisis de las marginales y la negatividad de esta, asi como calcular las medidas de teoria
de la informacién calculadas en este proyecto para asi entender el comportamiento de esta
funcidn en el espacio fase.
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A CONSTANTES DE NORMALIZACION

A. Constantes de normalizacion
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A CONSTANTES DE NORMALIZACION
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