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I RESUMEN

1. Resumen

En este trabajo se estudia el comportamiento cuantico de una particula confinada en un
potencial de doble pozo con un escaldn central, analizando cémo varian distintas magnitu-
des en funcién del ancho y la altura de dicho escalén. Se emplean tanto la funcién de onda
como la funcién de Wigner para caracterizar los estados cudnticos, evaluando indicadores
como la entropia de Shannon, la entropia asociada a la funcién de Wigner, la probabilidad
de tunelaje y la negatividad de la funcién de Wigner. Se consideran dos niveles de ener-
gia y diferentes regimenes de potencial, lo que permite identificar patrones de correlacion
entre estas cantidades, asi como cambios abruptos relacionados con el cruce de energia £
con la altura del potencial V. El andlisis revela diferencias sustanciales entre estados de
baja y alta energia, asi como limitaciones numéricas en estados mas energéticos debido a
su cardcter mas extendido y a la complejidad de las interferencias cudnticas.

Palabras clave: Mecdnica cudntica, Espacio fase cudntico, Potencial de doble pozo, Fun-
cién de Wigner, Entropia de Shannon, Negatividad, tunelaje.
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2 INTRODUCCION

2. Introduccion

La mecdnica cudntica surge a principios del siglo XX como una rama de la fisica para
describir el comportamiento de fendmenos a nivel microscopico, ya que la mecénica cla-
sica no podia describir de manera apropiada ciertos fenénemos tales como la radiacién
de cuerpo negro, el efecto fotoeléctrico o la estabilidad de los 4tomos. Esta rama impuls6
la busqueda de nuevos conceptos para brindar una explicacion. El primer descubrimiento
lleg6 alrededor del afio 1900 cuando Max Planck introdujo el concepto de cuanto [9],
postulando que el intercambio de energia entre la radiacion y sus alrededores se da en
forma de paquetes cuantizados [3]]. En 1905, Albert Einstein ayudé a consolidar el con-
cepto de cuanto propuesto por Planck [[I0], reconociendo que la cuantizacién de ondas
electromagnéticas también debia ser vélida para la luz, de modo que propuso que la luz
en si misma estd hecha de pequefios pedazos de energia o pequefias particulas llamadas
fotones, dando la oportunidad a Einstein de dar una explicacion al efecto fotoelétrico.
Estos trabajos asi como el realizado por Arthur Compton [[I3]] dieron las bases tedricas
y experimentales para el desarrollo de la mecdnica cudntica. Una particula confinada en
una caja es uno de los sistemas mds simples a estudiar en mecanica cudntica, el andlisis
de este tipo de sistemas tiene su origen en la segunda década del siglo XX con el origen
de la mecdnica cuantica, con la formulacion ondulatoria propuesta por Erwin Schrédinger
[14]], este permite analizar fenémenos fundamentales de la mecdnica cudntica, tales como
estados estados ligados y la cuantizacion de energia.

En este proyecto se estudia un sistema de una particula confinada en un doble pozo de
potencial, con el objetivo de construir y analizar su funcion de Wigner [[19]. Esta herra-
mienta matematica establece un vinculo entre la descripcion ondulatoria de la mecanica
cudntica y la representacion probabilistica en el espacio de fases, ofreciendo una pers-
pectiva que permite visualizar simultdneamente informacién de posicién y momento sin
abandonar la naturaleza cuéntica del sistema. Este “puente” es valioso porque, aunque en
mecdnica clésica el estado de una particula se describe de forma precisa por un punto en
el espacio de fases, en el dominio cudantico las restricciones impuestas por el principio de
incertidumbre [20] impiden una descripcion idéntica, y la funciéon de Wigner ofrece una
forma de explorar esas diferencias de manera cuantitativa.

El doble pozo de potencial es especialmente interesante en este contexto porque combina
fendmenos de confinamiento y de tunelaje, lo que genera patrones de interferencia y co-
rrelaciones no clasicas en el espacio de fases que la funcion de Wigner puede capturar de
forma directa. Analizar este tipo de sistema no solo permite caracterizar la transicion entre
estados localizados y deslocalizados, sino también identificar manifestaciones claras de la
no clasicalidad, como la aparicion de regiones negativas en la funcién de Wigner. De este
modo, el estudio ofrece una ventana para comprender cémo la estructura del potencial y
la energia del estado influyen en la naturaleza cudntica del sistema.

2.1. Ecuacion de Schrodinger
A principios del siglo XX, los modelos atomicos cldsicos como el propuesto por Niels

Bohr[16] habian logrado explicar ciertos aspectos del dtomo de hidrégeno; este postulaba
que la materia poseia propiedades ondulatorias y senté las bases para que se reconsiderara
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2.1 Ecuacién de Schrodinger 2 INTRODUCCION

la naturaleza de la particula. Inspirado por esas ideas, Erwin Schrodinger|14{introdujo una
ecuacion diferencial en la que la funcién de onda V(7 t) no era mas que una herramienta
matematica para predecir la probabilidad de encontrar una particula en determinada regién
del espacio.

Esta nueva ecuacion respondia a una necesidad crucial, explicar por qué los 4tomos poseen
niveles discretos de energia y como se organiza la distribucién de los electrones en los
orbitales. En su forma general, la ecuaciéon de Schrodinger dependiente del tiempo para
una particula de masa m en un potencial V' (7, t) se expresa como:
oV (7, t) h?
ih——t = | ———V? + V(7,t)| U(F,1). 2.1

ot 2m (7 2)| W 8) 1)
Donde el operador V? es el Laplaciano, este término representa la energia cinética del
sistema y tiene la siguiente forma:

0? 0? 0?
Vies —+—+—, 2.2
ox? * oy? + 0z 2.2)
V (7, t) corresponde al potencial externo que actda sobre la particula; este puede depender
tanto del tiempo como de la posicidn, y representa la energia potencial del sistema.

Para sistemas en estado estacionario, se asume una solucién separable en funcién espacial
— 771Et ., e 7° . .

y temporal W (7, t) = ¢(7)e " , que lleva a la ecuacién de Schrodinger independiente del

tiempo:

I () + VAU = Bl 3)

Esta ecuacién se formula como un problema de valores propios, donde las funciones de
onda 1), () son las funciones propias y los correspondientes valores F,, constituyen el
conjunto de niveles de energia permitidos. Asi, cada indice n identifica un valor propio £,,,
y la cuantizacién de la energia se deriva de las condiciones de contorno y normalizacién
que restringen las soluciones no triviales [I4] La normalizacién de la funcién de onda y la
imposicién de condiciones de contorno como las asociadas a este problema en las cuales
la funcién se anula en regiones para las cuales V' — oo, garantizan que las soluciones
sean fisicamente aceptables.

Para sistemas ideales como una particula en un pozo infinito de potencial, o un osci-
lador armonico, las soluciones del sistema son analiticas. Entre estos, el problema del
doble pozo cuadrado de potencial infinito de igual forma representa un caso en el que las
soluciones de la ecuacion de Schrodinger pueden obtenerse de forma analitica en cada
region del potencial; sin embargo, la imposicién de las condiciones de frontera en este
problema origina ecuaciones trascendentales para los valores propios (energias), es decir,
estas ecuaciones implican expresiones en las que las funciones trigonométricas y expo-
nenciales se combinan con los pardmetros energéticos y para las cuales las soluciones
deben encontrarse mediante métodos numéricos. Esto representa un problema de valores
propios en los que existen infinitas raices, para estos hay algoritmos como el método de
Newton-Raphson [15] que requiere tener una estimacién inicial, y si la estimacion inicial
no es buena esto podria llevar a una convergencia errénea o incluso a una divergencia en
el cdlculo.
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2.2 Funcién de Wigner 2 INTRODUCCION

La descripcion cudntica de sistemas fisicos, como la obtenida a partir de la ecuacion de
Schrodinger, fundamenta la comprension de la funcion de onda como la herramienta esen-
cial para conocer el comportamiento y las probabilidades asociadas a las particulas. Sin
embargo, la interpretacion y andlisis de estos estados cudnticos pueden enriquecerse con
representaciones alternativas que permitan una visiéon mas cercana a la intuicion clésica,
sin perder la esencia cudntica. En este contexto, surge la funcién de Wigner, que ofrece
una representacion en el espacio fase y permite estudiar de manera mds directa fenomenos
como la interferencia cudntica y la no clasicalidad inherente al comportamiento micros-
copico.

2.2. Funcion de Wigner

Esta funcion fue concebida en 1932 por Eugene Wigner [[19] con el objetivo de estudiar las
correcciones cuanticas a la mecanica estadistica clasica. Fundamentalmente, se buscaba
reemplazar la funcién de onda, por una distribucion de probabilidad en el espacio fase.
En la fisica clésica, el estado de un sistema se describe mediante un punto en un espacio
de fases de 6N dimensiones (para /N particulas), definido por sus posiciones y momentos.
La funcién de Wigner representa una intento para conciliar la intuicidn cldsica del espacio
de fases con la no clasicalidad de la mecanica cuantica. En una dimension, esta funcién
se construye de la siguiente manera:

W)= [ ot v -y

Esta es una funcion real, cuyas marginales son el cuadrado de la funciéon de onda en
espacios de posicién |¢(x)|? y en espacio de momentos |(p)|?, estas marginales son dis-
tribuciones de probabilidad que se obtienen al integrar toda la informacién sobre una de
las variables del sistema que en este caso son las posiciones y momentos (x, p). Aseguran-
do asi que pese a describir simultdneamente posicion y momento, respeta los resultados
habituales de la mecénica cuéntica cuando nos fijamos solo en una de las variables. Como
consecuencia, si se integra W (z, p) sobre todo el espacio de fases, el resultado es igual a
1, lo que expresa que la funcion estd normalizada y que la probabilidad total de encontrar
la particula en algtin lugar del espacio, con algiin momento, es siempre la unidad [21]], i.e:

2ipy

™ dy. (2.4)

[ W (@ p)dp = (@), 2.5)
[ W@ p)de = [0 (p)P, 2.6)
/. Wz, p)dzdp = 1. (2.7)

Esta funcién es clasificada como una distribucién de cuasi-probabilidad, y este término
es crucial ya que a diferencia de una distribucién de probabilidad clédsica que siempre es
no negativa, la funcion de Wigner puede tomar valores negativos. Esta es la caracteristica
fundamental de esta funcion, lo cual sirve como indicador de la no clasicalidad de un
estado. En 2004, Anatole Kenfack y Karol Zyczkowski [22]] definieron el volumen de las
regiones negativas como un indicador de no clasicalidad como:

NW) = / / W (z, p)|ddp — 1, 2.8)
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2.3 Teoria de la informacion 2 INTRODUCCION

que para estados coherentes puros vale cero. Los estados coherentes son estados cuya
dindmica, se asemeja a la de un oscilador arménico clasico, cuyas soluciones son Gaus-
sianas [23]]. Entonces para estados Gaussianos, la negatividad es cero.

Estos valores negativos indican interferencia cudntica y no se observan en sistemas pu-
ramente clasicos. Por ejemplo, la funcion de Wigner de un estado de "gato" muestra dos
picos Gaussianos con franjas de interferencia entre ellos que albergan regiones negativas.

La negatividad de la funcién de Wigner no solo es un indicador tedrico de la no clasica-
lidad, en el procesamiento cudntico se le considera un recurso [24]]. A diferencia de los
enfoques basados en "qubits", donde la informacién cudntica se codifica en sistemas de
dos niveles, el computo cudntico de variables continuas utiliza modos bosénicos, como
los del campo electromagnético, cuyas variables de posicién y momento son continuas

Incorporar medidas de teoria de la informacién como entropias de Shannon aporta una
forma alterna de cuantificar la negatividad de la funcién de Wigner, separando las contri-
buciones de las zonas positivas y negativas, transformando la interferencia cuantica en un
recurso capaz de calificarse, y consumirse en protocolos de computo.

2.3. Teoria de la informacion

La teoria de la informacidn tuvo su origen en la primera mitad del siglo XX, cuando Clau-
de Shannon estableci6 sus fundamentos [[T1]]. Este marco tedrico se centré en el estudio de
los mecanismos mediante los cuales la informacion se transmite, procesa y almacena en
diversos sistemas de comunicacion. Un concepto fundamental dentro de esta teoria es la
entropia, que se utiliza como medida cuantitativa de la incertidumbre asociada a un con-
junto de datos o eventos. En su formulacion discreta, la entropia de Shannon se expresa
como:

S=—=Y prlogps, (2.9)
!

donde p; representa la probabilidad del suceso k.

Considerando que la funcién de onda en mecénica cudntica admite una interpretacion pro-
babilistica, es posible establecer un vinculo directo entre la teoria de la informacién y la
descripcion cudntica de los sistemas [2]]. En este contexto, la entropia de Shannon puede
entenderse como una medida del grado de incertidumbre en la descripcion del estado, esta
interpretacién fue dada por Iwo Biatynicki-Birula y Jan Mycielski [31]], quienes propu-
sieron cuantificar la incertidumbre usando la entropia diferencial de Shannon (Ec. [2.T1)
tanto para las distribuciones de posicion y momento, ya que estas miden la dispersion en
cada variable, a mayor entropia mayor incertidumbre o deslocalizacion en alguna de las
variables [[I]]. En su articulo el resultado central es una desigualdad andloga a la presentada
por Werner Heisenberg [20]:

Sy + 5, > 1+ logm. (2.10)

Esta desigualdad implica que no se puede reducir arbitrariamente la suma de incertidum-
bres informacionales en posicion y momento ya que si la entropia de posicion disminuye
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2.3 Teoria de la informacion 2 INTRODUCCION

(distribucion muy localizada), entonces la entropia de momento debe aumentar (distribu-
cién extendida), y viceversa. Asi, si una distribucién estd muy localizada, la mayor parte
de la probabilidad se concentra en una regién pequefia; mientras que en una distribucién
mads extendida o “deslocalizada”, la probabilidad se reparte sobre un dominio mas amplio.

La naturaleza estadistica de los resultados de medicién en mecénica cudntica hace que la
definicién de entropia de Shannon se integre de forma natural, bastando con utilizar las
probabilidades derivadas de la funcién de onda para su célculo.

Dado que el médulo al cuadrado de la funcién de onda define una distribucién de pro-
babilidad continua, es necesario adoptar la versién continua de la entropia de Shannon

[3]]: .
S = —/ p(z)logp(zx) dz, (2.11)

—00

donde p(z) = |1(z)|? corresponde a la densidad de probabilidad en el espacio de posi-
ciones.

En este sentido, extender el concepto de entropia a descripciones cudnticas en el espacio
de fases conduce de manera natural al uso de la funcién de Wigner como herramienta.
Esta funcion permite representar el estado cudntico en términos de una cuasi-distribucién
en el espacio (z, p), proporcionando asi un puente entre la descripcion probabilistica y la
dindmica cudntica.

La funcién de Wigner, al ser una distribucion de cuasi-probabilidad que puede dar valores
negativos, presenta caracteristicas que no se encuentran en distribuciones de probabili-
dad convencionales. Esta peculiaridad es fundamental para representar la interferencia
cudntica y la no clasicalidad del sistema, pero también genera ciertas complicaciones al
momento de calcular magnitudes basadas en funciones logaritmicas, como es el caso de
la entropia. En particular, la presencia de regiones negativas en W (z, p) implica que el
calculo del logaritmo natural, requerido para la definicién de la entropia, debe manejarse
con cuidado. Para ello, se adopta la convencién de trabajar en la rama principal del loga-
ritmo complejo, lo que permite extender la definicién de entropia a la funcién de Wigner
a pesar de sus valores negativos. De esta forma, la entropia de la funcién Wigner, aunque
puede tomar valores complejos, sigue siendo una herramienta util para analizar y cuanti-
ficar la interferencia y las propiedades cudnticas del sistema. Para calcular la entropia de
Shannon de la funcién de Wigner, lo hacemos con la Ec.[2.12]

Sw = —/W(Lp) log W (x, p) dz dp. (2.12)

Calcular esta entropia resulta de gran importancia, ya que permite cuantificar el grado
de no clasicalidad del estado cudntico desde una perspectiva de teoria de la informacién.
Mientras que la funcién de Wigner ofrece una representacion completa del estado en el
espacio de fases, su entropia proporciona una medida cuantitativa de la incertidumbre
inherente a esa representacion. Esto permite diferenciar entre estados més localizados y
aquellos con mayor extension o superposicion en el espacio de fases, reflejando fenéme-
nos cudnticos como la interferencia.
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2.4 Tunelaje 2 INTRODUCCION

Desarrollando la Ec. dividiendo la entropia en regiones donde la funcién de Wigner
es positiva (W) y negativa (W ™):

Sw = —/W+<£L‘,p) log W+<$,p)d$dp

(2.13)
— /W_(x,p) log W_(x,p)dxdp—iw/W‘(x,p)da:dp.

Las primeras dos integrales en la Ec. [2.13| representan respectivamente la entropia de
Shannon para las regiones donde la funcién de Wigner es positiva y negativa. Esto no es
una entropia de una distribucién de probabilidad en el sentido cldsico, ya que como se
menciond, la funcién de Wigner es una distribucién de cuasi-probabilidad, pero al separar
las regiones positivas y negativas, se puede aplicar la nocién de entropia de Shannon por
partes.

Asi, la primera integral mide la informacién clasica asociada con la region positiva de
W (x,p), la segunda aplica la misma idea pero sobre la region negativa y el tercer término
(parte imaginaria) es proporcional al volumen de las regiones negativas.

WFK/W%%MMW (2.14)

La Ec. 2.13|permite descomponer el comportamiento real (entropia positiva), del compor-
tamiento cudntico (negatividad e interferencia), siendo también una conexion con la teoria
de recursos, donde como se menciond, la negatividad se considera un recurso computacio-
nal.

2.4. Tunelaje

El fenémeno de tunelaje fue reconocido desde los primeros afios del desarrollo de la
mecdnica cudntica. Friedrich Hund en 1927 [26] al aplicar la ecuacion de Schrodinger a
un potencial de doble pozo, identificé la posibilidad de que un estado cudntico oscilara
entre pozos sin superar el maximo energético. Poco después, Nordheim y Fowler [27]
exploraron el tunelaje en el contexto de la emision electrénica desde metales, postulando
que los electrones pueden atravesar una barrera superficial bajo energias proximas a la
barrera. Una de las primeras aplicaciones de gran impacto fue la explicacién tedrica de la
desintegracion alfa por tunelaje, desarrollada por George Gamow |[18]].

El tunelaje se formaliza mediante la ecuacion de Schrodinger independiente del tiempo
para una particula de masa m que incide sobre una barrera de potencial rectangular de

altura Vj y ancho b:
h? d*)(x)
2m  dx? o) Y@ =13

Si E < Vj, la solucién dentro de la barrera se describe como:

2m(Vo — E)
Y(x) = Ae "™ 4+ Be™, k= R (2.16)
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2.4 Tunelaje 2 INTRODUCCION

Imponiendo condiciones de continuidad para 1/ y su derivada en los limites de la barrera,
se obtiene el coeficiente de transmisioén 7' mediante:

E(Vo—E) o

T =|t]*~ 16 V2 ,

(2.17)

en el régimen de barrera ancha y alta, revelando una dependencia exponencial de la pro-
babilidad de transmisién con el ancho y la altura de la barrera.

El fenémeno de tunelaje cudntico ha sido esencial en la interpretacion de desintegracion
nuclear, emision electrénica y en tecnologias como los diodos, el tunelaje en supercon-
ductores y el microscopio de efecto tinel. Estos avances fueron reconocidos con Premios
Nobel, otorgados a Esaki [28]], Giaever [29] y Josephson [[30] respectivamente.

En esta investigacion, la probabilidad de tunelaje se calcula mediante la funcion de onda
y su extension a través de la barrera con la Ec. [2.18

p(x, An) :/

x

[, M) P da, (2.18)
x1
La ecuacién de Schrodinger es fundamental para describir los estados cudnticos de una
particula y determinar sus funciones de onda, que contienen la informacién necesaria para
conocer la distribucién de probabilidad en el espacio. Para complementar esta descripcion
y capturar aspectos caracteristicos de la naturaleza cudntica, como la interferencia y la co-
herencia, se utiliza la funcién de Wigner, una representacion que, aunque derivada de la
funcién de onda, permite identificar regiones donde se manifiestan efectos exclusivamente
cudnticos a través de la presencia de valores negativos. La teoria de la informacién propor-
ciona herramientas valiosas para cuantificar estas caracteristicas, mediante medidas que
evalian la no clasicalidad del sistema. En este contexto, el fendmeno de tunelaje puede
ser analizado desde la funcién de onda y desde estas medidas de informacién, dando asi
una vision mds completa de su naturaleza cudntica. Esta interrelacion entre funciones de
onda, representacion de Wigner, teoria de la informacién y tunelaje motiva el desarrollo
del presente trabajo.
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3 DOBLE POZO INFINITO

3. Doble pozo infinito

Una vez dado el contexto y los fundamentos tedricos del trabajo, se procede a explicar el
planteamiento del problema.

Se tiene una particula confinada en la siguiente region de potencial.

V(z)
Vo

INE]
N~
N

+
VIS
)

Figura 1: Doble pozo cuadrado de potencial de paredes infinitas y longitud 7 centrado en
5 con una barrera de ancho b y alto Vj.

Cuyas regiones son las siguientes:

oo, z<0ox>m,
b
0, O0<z<f—3

Viz) = 2’ 3.1
) Vo, 3-5<a<i+2, G-D
0, g+%<x<7r.

Este potencial representa un doble pozo cuadrado infinito con una barrera rectangular
centrada en x = 7, cuya presencia permite el tunelaje entre las dos subregiones y cuya
descripcion estd dada por la ecuacion de Schrodinger independiente del tiempo.

1 (@)

Co2m da?

+ V(x)(z) = Exip(x). (3.2)

Dividimos este problema en tres regiones de interés.

0, O<z<i-1%
Vi) =qVo, 2-3<z<I+2 (3.3)

0, g+g<x<7r.

Se considerardn unidades atémicas, es decir, i = 1y m = 1, y para las cuales la ecuacién
de Schrodinger tiene la siguiente forma.

Para la primera region la ecuacién de Schrodinger toma la siguiente forma en la Ec. 3.4}

_1d%(2)
2 dx?

= B (). (3.4)
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3 DOBLE POZO INFINITO

Se define entonces \,,
A2 =2F,.

La solucion de esta ecuacion serd en términos de senos y cosenos.

Py (z) = Asin A,z + Bcos \,x. (3.5)

Para la segunda region la ecuacion de Schrodinger serd de la siguiente forma en la Ec.
- L ()
x

~5 g Voa(z) = Exn(a). (3.6)

Se define k en términos de A como:
K2 =2Vy — A2

Para regiones en las que la energia del sistema sea menor que la barrera de potencial
(E < Vp) se tendran soluciones reales.

o) = €™®. (3.7)
Cuyas soluciones seran:

o(z) = C'sinh K,z + D cosh k. (3.8)

Para la tercera region, las soluciones serdn muy parecidas a las obtenidas en la primera
region.

1Py (x)
3 d:i? = B, 3(). (3.9)
P (x) = Asin A, (m — x) + Bcos A\, (1 — ). (3.10)

Por lo tanto, el conjunto de soluciones para cada region del espacio es el siguiente:

Asin \,x + Bcos \,z, 0<x<g—g,
Y(z) = ¢ Csinh kpx + Dcoshkpz, 5 — g <z <D+ %, (3.11)
Asin A,z + B cos A\, g+g<a:<7r.

Es necesario analizar la forma de la funcién en las distintas regiones poniendo ciertas
condiciones de frontera y, a partir de aqui, determinar las constantes y los valores propios,
es decir, las energias. Asi mismo, se debe considerar la paridad de la funcién de onda,
ya que esta dard posteriormente los estados energéticos de la funcion. Para estados con
nimero cudntico n = 2/ — 1 se asociardn estados pares de la funcién de onda, y para
estados con nimero cudntico n = 2[ se asociardn estados impares de la funcién de onda,
i.e., para soluciones pares consideraremos soluciones en la regién central asociadas al co-
seno hiperbodlico, y para soluciones impares seran aquellas asociadas al seno hiperbélico.
De igual manera se obtendran dos conjuntos de soluciones asociadas a las constantes de
normalizacién, un conjunto para las regiones pares, y otro para las impares. Se comenzard
haciendo el andlisis para la region par.

En 2 = 0 se debe cumplir que
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¥1(0) = 0. (3.12)
Evaluando la funcién:

1(0) = Asin \,,0 + B cos A\,0 = 0. (3.13)
Resultando asi que B = 0, entonces ¢ (z) = Aj sin A\, x.
Para la segunda region, la funcion de onda sera:
o(z) = D cosh k. (3.14)

La solucién en esta region debe estar centrada en 7 de modo que al evaluarla en el centro,
esta se anule, por lo que 1), es:

(e

o(x) = D cosh k, (m — 2). (3.15)

En x = 7 debe cumplirse que la funcién de onda debe anularse, 13(7) = 0
Y3(m) = Asin A\, m + B cos A\, 7. (3.16)

Esto tiene un grave problema ya que la condicidn para que esto se anule estd completa-
mente en \,, por lo que es necesario escribir la funcién de onda de tal forma que en ese
intervalo al llegar a 7 se anule, por lo tanto, la funcién tendria la siguiente forma:

Y3(x) = Asin A\, (7 — x) + Bcos A, (T — ). (3.17)
De esta forma, si evaluamos la funcion de onda en 7
Y3(m) = Asin A\,0 + B cos A,0. (3.18)
Por lo que para esta region B también es cero, entonces
Y3(x) = Aysin A\, (7 — z). (3.19)

Por lo tanto, el conjunto de soluciones para la region par es:

Ay sin A\, x, O<m<g—%,
Y(x,A\n) = ¢ Dcoshkp(z—2), Z—-2<ap<Z4l (3.20)
Ay sin A\, (7 — ), g+g<x<7r.

Se debe garantizar la continuidad de la funcién de onda en todas las regiones del pozo de
potencial; por lo tanto, es necesario considerar las siguientes condiciones de continuidad:

wims) i)
“(52) = (5s)
i (3-5)-wu(3-3) (.23
“(5a) - i3)
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De la primera condicién se obtiene:

—b b
Ay sin A, (” ) = Dcosh . (3.25)
De la segunda condicion se obtiene:
—b b
Ay sin A, <”2> = Dcosh . (3.26)

Y es obvio que se obtiene la misma ecuacion que en el primer intervalo, por lo que hay
que considerar la continuidad de las derivadas de la funcién de onda:

T—2b

b
A\, cos A, <2> = — Dk, sinh /£n§. (3.27)

Para la dltima region:

T—2b

b
A\, cos A, <2> = — Dk, sinh Iin§. (3.28)

Se obtiene la misma ecuacion, por lo que haciendo el cociente entre las ecuaciones [3.26]
y[3.28] obtenemos una ecuacién trascendental para determinar \,,.

T —>b

Ap COt A, (
2

b
) = —kK, tanh lfn§. (3.29)

Cuya solucién debe ser determinada de forma numérica. Estas soluciones para A corres-
ponden a los niveles energéticos. Como es bien sabido, la funcién de onda por su in-
terpretacion estadistica como densidad de probabilidad, debe cumplir con la siguiente
condicion:

/oo () [2dz = 1. (3.30)

Es decir, esta funcion debe estar normalizada. Por lo que la condicién de normalizacién
para esta solucidn es la siguiente:

wT—b w+b

/ 7 (Aysin \z)2da+ / > (Deoshy (o — 2))da+ / L (Ausin(m — 2))%dr = 1.
0 % ﬂT

(3.31)
Teniendo entonces un sistema de 2 ecuaciones para dos variables, A; y D, que son las
respectivas constantes de normalizacién que serdn funcién del potencial Vj, de by de A,
cuya expresion completa esté en el apéndice

Pasando ahora al caso impar, en la region central se tendrd una funciéon —C'sinh x, (5 — ),
y en la tercera regién habrd un cambio de signo, es decir, tendremos — Aj sin A, (z — )
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asi como las siguientes condiciones de frontera y las respectivas constantes de normaliza-

cion:
T b T b
U (2 - 2) =1 (2 - 2) ; (3.32)
™ b ™ b
V2 <2 + 2) = 13 <2 + 2) ) (3.33)
, (7™ b , (7™ b
—— ] = - — = 34
w1<2 2) %(2 2>, (3.34)
(T (Tt
¢2<2+2>—¢3<2+2>. (3.35)
b .EE)
Tz : 2 2 - m 2 " - 2
/ (Agsin A\,x) dx+/ , (Csinhr, (2 — x)) dx+/+b (Agsin A, (x — m))*dz = 1.
0 =2 mtb
i ’ (3.36)
De las condiciones de continuidad obtendremos las siguientes ecuaciones:
Agsin ), <7T2_b> — C'sinh /@ng. (3.37)
De la segunda condicion se obtiene:
—b b
Aysin A, (” ) = Csinhir, 3. (3.38)

De la tercera y cuarta condicién se tiene:
—b b
Ag )\, cos A, <7T2> = —(Ck,, cosh /ini. (3.39)

Dando entonces un sistema de 2 ecuaciones para dos variables, A, y C, que son las respec-
tivas constantes de normalizacion para funciones impares que seran funcion del potencial
Vo, de by de )\, cuya expresion completa estd expresada en el apéndice |Al Ahora, si se
dividen estas dos ecuaciones se obtiene la siguiente ecuacion trascendental:

T—>b

A COt Ay, < ) = —K, coth ﬁng. (3.40)

Que es crucial para encontrar las respectivas raices para las soluciones impares. De modo
que el conjunto de soluciones para esta region es el siguiente:

Ag sin A\, x, O<x<g—%,
Y(x,\y) = —Csinhry (x—F), F-4<a<i+l (3.41)
Ay sin \, (7 — x), g+g<$<7r.

Una vez hecho este andlisis es posible dar la funcién de onda, para este trabajo se consi-
deraron dos nimeros cudnticos, es decir, consideraremos que n va de 1 a 2, por lo tanto
las funciones de onda para cada uno de estos valores estdn graficadas en la Fig.[2] y la
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Fig.[3] Los estados se clasifican por su paridad: los valores n = 2] — 1 corresponden a
funciones de onda pares y los valores n = 2/ a funciones impares. El estado base (n = 1)
no muestra ningdn nodo (Fig. [2), el primer excitado (n = 2) presenta un nodo en el centro
y I6bulos de signo opuesto a ambos lados (Fig. [3)).

Funcién de onda paran = 1
WP(x,An)

08
06

04

1 1 1 Il ] L ] 1 X
0.5 1.0 15 2.0 25 3.0

Figura 2: Funcién de onda paran = 1,V, =5,b = 1.

Funcién de onda paran= 2
Wix,A,n)

05F

Figura 3: Funcién de onda paran = 2,V = 5,b = 1.

Estas funciones de onda en comparacion con las funciones de onda de una particula en
un pozo cuadrado de potencial poseen una diferencia en la simetria y estructura. Para un
pozo cuadrado (V; = 0y b = 0) las funciones de onda tienen una forma senoidal, en
este caso al observar la Fig. 2] vemos que en la regidn central se tiene un pequeiio valle,
esta region estd asociada al escalén de potencial y este pequefio valle es originado por un
fendmeno de tunelaje [18]], esta es una regién en la que la probabilidad de encontrar la
particula en la region del escaldn es diferente de cero, mientras que en el pozo cuadrado
las funciones de onda estdn distribuidas en una regién como podemos ver a continuacién

en la Fig. M)y la Fig.[5

15 PROYECTO TERMINAL I



3 DOBLE POZO INFINITO

Funcion de onda paran = 1
W(x,A,n)

0.8

0.6+

0.4+

0.2+

1 1 Il L 1 L L Il L 1 L 1 L 1 L 1 Il 1 1 L 1 L T 4
0.5 1.0 1.5 2.0 25 3.0

Figura 4: Funcién de onda en un pozo cuadrado paran = 1,1V, = 0,b = 0.

Funcion de onda paran =2
wix,An)

0.5+

0.5 1.0 1.5 2.0 2.5 3.0

Figura 5: Funcién de onda en un pozo cuadrado paran = 2, V5 = 0,b = 0.

Para n = 1 la funcién de onda presenta un solo 16bulo sin nodos internos (Fig. [)); para
n = 2 aparece un nodo en el centro y dos 16bulos de signo opuesto (Fig.[5). Cada funcion
de onda tiene al igual que en el doble pozo cuadrado n — 1 nodos y su forma refleja
el incremento en energia y en el nimero de oscilaciones con n, es decir a mayor nivel
energético £, mayor cantidad de oscilaciones.

La cuantificacion del tunelaje se realiza directamente mediante la probabilidad de encon-
trar la particula en la region del escaldn, definida en la Ec.|3.42| como:

(2, A) = / C b, M) 2 d, (3.42)
x1
donde
_r_ b T b
=57y 75Ty

Esta probabilidad refleja la penetracion de la funcién de onda dentro de la barrera de
potencial y representa directamente la capacidad que tiene la particula para atravesar la
barrera.
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El valor de p (x, \,) proporciona una medida cuantitativa del tunelaje, siendo sensible
tanto a la altura Vj; como al ancho b de la barrera contenidos en \,,. A medida que estas
caracteristicas del potencial varian, la probabilidad de encontrar la particula en la barrera
se modifica, reflejando la competencia entre la confinacién impuesta por la barrera y la
naturaleza ondulatoria de la particula.

Dada la construccion de la funcion de onda del sistema, la entropia de Shannon para el
estado n—ésimo de la funcion de onda se define como:

S == || (. M) P log [ A,) P, (343)

donde el dominio de integracién corresponde al intervalo = € [0, 7]. Esta expresién cuan-
tifica la dispersion en la distribucion espacial de probabilidad del estado cudntico n bajo
las condiciones impuestas por el doble pozo cuadrado infinito. De este modo la Ec. [3.43]
captura cémo la forma y extension v, (x, \,,), influenciada por el ancho b y la altura del
escalon de potencial V| de la barrera, determinan la informacién contenida en la localiza-
cion de la particula[] .

3.1. Funcion de Wigner del sistema

Para construir la funcién de Wigner del problema lo hacemos mediante la siguiente defi-
nicion: ‘
W(a,p) = / et y) v (e —y) e dy, (3.44)

donde hay que redefinir los limites de integracién para y en términos de x. Tendremos
el siguiente conjunto de desigualdades que delimitan la integracion para la funcién de
Wigner:

No. | Desigualdad

T b
Dl —e<y<cT_2_
(1) a:_by<2 5
2) g—g—x§y<g+f—x
3) g+g—x§y§w—x
T b
M les>ys_(F_2_
@) w—y>b<2 2 x) ,
T T
(L _Z_ > _ - _Z
) 2 2 x)—y>$ 2 9

(©) —(x—g—g)zyzx—w

Tabla 1: Desigualdades que delimitan la regién de integracion

Las desigualdades que aparecen en la Tabla. [T| generan el siguiente conjunto de rectas en
la regidn en la que se encuentra definido el pozo de potencial y la funcion de onda.

'Un estudio de la entropia de Shannon de la funcién de onda para el doble pozo puede encontrarse en la
primera parte de este proyecto.
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I = —X

S y=i-b-a

—y=—T4bg

—y=—5-1+
T b
754_5_%
Yy=m—x

....... y:x_ﬂ'

8 8

Figura 6: Rectas en el plano (z,y) que delimitan las regiones de integracion para la fun-
cion de Wigner asociada a un sistema con doble pozo cuadrado, donde las desigualdades
indican los intervalos en los que la funcién de onda es distinta de cero.

La Fig. [6] muestra las 8 rectas que surgen de graficar las desigualdades en la Tabla. [T}
Como podemos observar, estas rectas generan sobre el eje x tres regiones donde sabemos

que la funcién de onda es distinta de cero. Como podemos ver las rectas y = x; y = —x
. T b T b b

se intersectan con las rectas y = 575" Ty = —5 + 3 +z enel punto x = =, lo cual

define nuestra primera y segunda region de integracion, es decir, entre x = 0y z = ”Zb,

b b
§+x,g———x).Porloquelas

primeras dos integrales son de la siguiente forma (h = 1):

T
y€[—zx)entrer = Lyxr="2Lye -2+

1 = 4
Wl('rvpu )\n) = ; B wi (Z‘ + Y, An) wl (‘T - Y, An) €2zpydy7 (345)

_b
2

1 /3 z :
W2(x7p7 )\n) = — /2 wik (:C + Y, )\n) wl (:C - Y, )\n) €2lpydy7 (346)

b
T —g+§+$

Haciendo el andlisis para las otras dos regiones delimitadas por las rectas en la Fig. [0]
obtendremos las siguientes cuatro integrales:

1 _mybyg, )
Ws(2,p, An) = W/T 21, CU (@ 4y An) U (2 — y, Ay) €2PVdy, (3.47)
27277
IS S ;i
W4($,p, /\n) = ; / T b 77Z}2 (CC + Y, )\n) ¢2 (QT - Y, )\n) € Zpydy7 (348)
—27 g%
1 [~5-3+= sipy
Walepd) == [ @ u A de -y )y, (349
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1 T— .
W6(x7p7 )\n) = / w; (.T + Y, )\n) w?) (I‘ - Y, An) 62Zpydy7 (350)

T J—(m—x)
Como se observa en estas integrales, la funcion de Wigner dependera del niimero cudntico
n, cada estado ligado en el doble pozo cuadrado tendrd una funcién de Wigner diferente.

Una vez obtenida la funcién se Wigner, se procede a construir la entropia de Shannon
asociada a esta funcién que como ya se mencion6 en la Secc. [2.3] estd compuesta por tres

términos en la Ec.2.13]

Sw = —/W;r(m,p) log W (z, p)dxdp
(3.51)
- /Wf(%p) log Wi~ (x, p)dzdp — i?T/W[(x,p)dxdp.

Con esta construccién podemos pasar a analizar distintas cantidades como lo son la en-
tropia de Shannon de la funcién de Wigner, la entropia de Shannon de la funcién de onda
y la negatividad de la funcién de Wigner, en términos de los pardmetros del sistema.
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4. Dependencia paramétrica de las magnitudes

Comencemos por la entropia de Shannon de la funcién de onda para el primer estado
n = 1, Fig. [2} y fijemos el valor del alto del potencial en V' = 5y V' = 20. Al variar
el ancho de la barrera b desde 0 a 7. Cuando b = 0 tenemos un sistema de una particula
en una caja, de igual forma que cuando b = 7, entonces es de esperar que los valores de
entropia de Shannon de la funcién de onda coincidan en estos casos limite.

Con las Ecs. y la Ec. procedemos a calular las entropias de Shannon de am-
bas funciones, la funcién de onda y la funcién de Wigner. Se observa que a medida que
b aumenta desde cero, se observa inicialmente un crecimiento progresivo de la entropia,
reflejando una mayor deslocalizacion espacial de la funcién de onda. Esta deslocaliza-
cion espacial llega a un maximo alrededor de b ~ 2.04 tal como se muestra en la Fig.
coincidiendo con un maximo valor de interferencia en la funcion de onda generado por el
alto del escaldn central en el doble pozo, y posteriormente la funcién de onda empieza a
localizarse a partir de este punto, ya que cuando la energia del sistema es igual al alto del
escalon £/ = V' la funcién de onda empieza a localizarse progresivamente hasta alcanzar
el valor inicial de entropia, esto estd reflejado en la Fig.

Entropia de Shannon de la funcion de onda vs ancho de la barrera
TASEr 0 e e e e a1 e

095 . * . . ! ]

Entropla de Shannen

090F R ' ]
085 : .

0.80F | ]

00 05 10 15 20 25 30
b

Figura 7: Entropia de Shannon para una particula en el estado base en un doble pozo
cuadrado de potencial con V' = 5, en donde se observa el maximo valor de deslocalizacién
alrededor de b ~ 2.04 donde la linea roja punteada indica el valor de b parael cual £ = V.

Es de esperarse que en esta clase de sistemas se genere tunelaje [[I8]26]], esta probabilidad
se calcula mediante la Ec. [3.42] En este sistema el tunelaje aumenta conforme la energia
y ancho del escal6n de potencial aumenta. Esta probabilidad de tunelaje crece hasta un
maximo que ocurre justo antes de que £/ = V/, ya que en este punto la particula se encon-
traria por encima de la barrera. En el punto maximo de tunelaje antes de que la energia
sea igual al potencial la probabilidad de tunelaje es de alrededor de p ~ 0.72, reflejado en

la Fig.[§
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Tunneling vs Ancho de Barrera
Tunneling
1.0+ i . =

0.8F

0.6-

0.2+ .

L 1 1 L L L 1 L L L 1 L L L L 1 L 1 L L 1 1 1 b
0.0 0.5 1.0 15 20 25 3.0

Figura 8: Tunelaje en funcién del ancho de la barrera de potencial, se observa que para
el valor de b en el cual se tiene el maximo valor de probabilidad de tunelaje es p ~ 0.72
donde la linea roja punteada indica el valor de b parael cual £ = V.

La parte real de la entropia de la funcién de Wigner en cambio, difiere de estos com-
portamientos observados en la funcién de onda, ya que la contribucion de la entropia de
Shannon aumenta hasta b ~ 1.73 y empieza a disminuir hasta un valor menor al inicial
antes de empezar las variaciones de b. Para mostrar esto veamos el cambio en la entropia
en funcién del ancho del escal6n de potencial en la Fig. [9]

Entropia de la funcién de Wigner vs b
I o e B A T L B

Entropla

[t

2]
—
1

0.0 0.5 1.0 15 2.0 25 3.0

b

Figura 9: Entropia de la funciéon de Wigner en funcion del ancho del escalon de potencial
para el primer estado en el doble pozo cuadrado, con un valor del escalon de potencial de
V' = 5 donde la linea roja punteada indica el valor de b parael cual £ = V.

Si bien la entropfa de Shannon de la funcién de Wigner mostrada en la Fig. [9 no presen-
ta un patrén que pueda ser identificable con las demads cantidades, la negatividad de la
funcién de Wigner comparte maximos con la entropia de Shannon de la funcion de onda.
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Cuando el ancho de la barrera genera una energia tal que £ = V esta funcién cubre am-
bos pozos al mismo tiempo, y la entropia mide esta distribucién; en cambio la funcién de
Wigner y su negatividad miden la interferencia generada entre estos pozos. En la Fig. [I0]
podemos observar esto.

Megatividad de la funcion de Wigner vs b

7 —T —T T T E2V T T M
L ! j
L ! ]
[ ®
07k f —
L . :
L 1
06 Lo .
ﬁ [ 1
E | . |
3 osf i ]
= r \ .
= i ™ ]
= L 1
2 04l ! ]
= ) b 1
L 1 L
. . 1
0.3F . . ' .
L o !
021 : .
L 1 | | 1 1 | 1 | 1 ﬁ
0.0 5 10 15 20 25 30

Figura 10: Negatividad de la funcion de Wigner del primer estado en funcion del ancho
de la barrera de potencial, se observa un mdximo compartido con la entropia de la funcién
de onda alrededor de b ~ 2.04 para un alto del escaléon de V' = 5 donde la linea roja
punteada indica el valor de b parael cual £ = V.

Esto ocurre ya que la energia del estado base estd por debajo de la barrera de potencial,
esto implica que al variar el ancho de la barrera se genera interferencia al confinar la
funcién de onda en los pozos generados en los extremos. Veamos como se comportan
estas cantidades para V' = 20.

Entropia de Shannon de la funcion de onda vs ancho de la barrera
_|""|""|""|""|""|':E='v|_
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06 . ]

Entropia de Shannon
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Figura 11: Entropia de Shannon de la funcién de onda del primer estado con variaciones
del ancho del escalén de potencial b, para un valor del alto de potencial V' = 5, en el cual
se observa un maximo de entropia alrededor de b ~ 2.67 donde la linea roja punteada
indica el valor de b parael cual £ = V.
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Vemos en la Fig. [11{que el mdximo de entropia se recorre, conforme aumenta el valor de
V, ahora el méximo de entropia ocurre en el mismo punto en el que coinciden £y V,
posteriormente recuperamos el sistema de una particula en una caja y el valor de entropia
inicial es consistente con el valor final.

Tunneling vs Ancho de Barrera
Tunneling

10F
08L
061

0.4

02 .

0.0 05 1.0 15 20 25 30

Figura 12: Tunelaje de la funcién de onda en funcién de b, donde la linea roja punteada
indica el valor de b para el cual £ = V/, vemos que el valor mdximo de tunelaje se da en
b~ 2.51 yaque en £ =V la particula ya se encuentra por encima del escalon.

En este caso el maximo valor de tunelaje en la Fig. (12| ocurre alrededor de b ~ 2.51 lo
cual es de esperarse dado el alto del escalon. De igual forma que para el valor anterior
de V, la parte real de la entropia de Shannon no presenta un comportamiento que pueda
ser identificado con alguna de las otras cantidades de interés del sistema, en la Fig. [I3|se
observa esta entropia.
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Figura 13: Entropia de Shannon de la funcién de Wigner para el estado base en funcion
del ancho del escalén de potencial b, donde la linea roja punteada indica el valor de b para
el cual &/ = V/, para un valor del alto del escalén V' = 20, no se observa ningtn patrén
que coincida con las otras cantidades.

En este caso la negatividad de la funcion de Wigner comparte el maximo valor en el mismo
punto en que la probabilidad de tunelaje es maxima, lo cudl indica que la negatividad esta
siendo maximizada en los puntos de maxima probabilidad de tunelaje. Esto lo podemos
observar en la Fig. [14]
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Figura 14: Negatividad de la funcién de Wigner del estado base en funcién del ancho
del escalén de potencial b, donde la linea roja punteada indica el valor de b para el cual
E =V, para un alto del escalén V' = 20, el maximo valor de negatividad ocurre en
b~ 2.51.

Al comparar el comportamiento del sistema para V' = 5y V' = 20, se observa que, aun-
que las tendencias generales se conservan, la posiciéon de los mdximos de las distintas
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cantidades se desplaza de forma significativa. Para V' = 5, la entropia de Shannon de la
funcién de onda alcanza su valor maximo en b =~ 2.04, antes de que se cumpla la condi-
cién £ = V, ya que esta se cumple en b ~ 2.20, Fig.[7|y[8l Esto indica que la maxima
deslocalizacion espacial de la particula ocurre ain cuando hay presencia de tunelaje, ya
que este maximo en la entropia coincide con el maximo valor de pobabilidad de tune-
laje p antes de que la particula haya sobrepasado la barrera. En cambio, para V' = 20,
este maximo de entropia se traslada hasta b ~ 2.67, coincidiendo con el punto en el que
E =V, Fig. sin embargo podemos observar que la probabilidad maxima de tunelaje
se encuentra en b ~ 2.51 en la Fig. Este desplazamiento sugiere que al aumentar la
altura de la barrera, se requiere un mayor ancho de la barrera para alcanzar el estado de
maxima deslocalizacidn, y que en este caso la transicion entre el tunelaje y la particula li-
bre por encima de la barrera estd mas estrechamente asociada al incremento de la entropia
espacial.

La entropia real de la funcién de Wigner en la Fig.[9)y Fig.[I3] por su parte, mantiene un
comportamiento distinto en ambos escenarios, sin seguir de forma directa las variaciones
de la entropia de la funcion de onda ni de la probabilidad de tunelaje. Esto se debe a que
incorpora informacion de correlaciones posicion-momento, capturando la complejidad de
la estructura en el espacio de fases mds alld de la mera extension espacial de la densi-
dad. Asi, los maximos y minimos en esta magnitud no coinciden necesariamente con los
puntos de maxima deslocalizacién, sino con configuraciones particulares en las que las
coherencias cudnticas se organizan de manera diferente.

En cambio, la negatividad de la funcién de Wigner en la Fig. [I0] y Fig. [I4 muestra una
correlacién mds clara con el fenémeno de tunelaje. Para V' = 5, sus mdximos coinciden
con los de la entropia de la funcién de onda, reflejando que la interferencia que produce
la deslocalizacién también intensifica las regiones negativas en el espacio de fases. Para
V' = 20, la negatividad alcanza su valor midximo en b ~ 2.51, coincidiendo con el punto
de maxima probabilidad de tunelaje. Esto indica que, cuando la transferencia coherente
de probabilidad entre los pozos es mds intensa, la no clasicalidad del estado medida por
la negatividad también es maxima.

Para el segundo estado cudntico en el doble pozo, se realizaron las mismas variaciones,
es decir, se fij6 un valor del alto de potencial de V' = 5, 20 y se realizaron variaciones
del ancho del escaldon de potencial. mostrando que de igual forma el comportamiento de
la entropia de Shannon tanto para la funcién de onda como para la funcién de Wigner
difieren.

En este caso los maximos y minimos de entropia de la funciéon de onda y el valor £ =V
no coinciden, ya que al ser el segundo estado mds energético, este tiende a saltar por
encima de la barrera de potencial para menores valores de b, en este caso esto ocurre
alrededor de b ~ 1.88, este valor de b tampoco coincide con el mdximo valor de entropia
ni con el minimo de la misma. Esto lo podemos ver reflejado en la Fig. [T5]
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Entropia de Shannon de la funcién de onda vs ancho de la barrera
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Figura 15: Entropia de la funcién de onda para el segundo estado, n = 2, en funcién del
ancho del escalon de potencial b, donde la linea roja punteada indica el valor de b para el
cual £ = V, con un valor del alto del escaléon de V' = 5. Se tiene un maximo en b ~ 2.51.

Por otro lado, la entropia de la funcién de Wigner para este estado presenta un maximo
en b ~ 1.88, que como ya se menciond es el punto en el que E es muy cercano a V. Esto
se puede observar en la Fig.[T6] donde vemos un comportamiento creciente de la entropia
desde b = 0 hasta b = 1.88 para posteriormente decrecer.
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Figura 16: Entropia de la funcién de Wigner del segundo estado, n = 2, en funcién del
ancho del escalén de potencial b donde la linea roja punteada indica el valor de b para el
cual & =V, para un alto del escalén de potencial de V' = 5.

En este caso el mdximo valor de tunelaje se da en b ~ 1.73 y no presenta ningtin patrén
identificable con alguna otra cantidad, esto lo podemos ver en la Fig.[I7]
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Tunneling vs Ancho de Barrera
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Figura 17: Tunelaje de la funcién de onda del segundo estado n = 2 en funcién del ancho
del escaldn b, donde la linea roja punteada indica el valor de b para el cual £ = V. Vemos
que el valor maximo de tunelaje se daen b ~ 1.73 ya que en £/ = V la particula ya se
encuentra por encima del escaldn.

La negatividad de la funcién de Wigner de este estado también comparte el maximo con

la entropia de Shannon, es decir, se encuentra localizado en b ~ 2.51, y es un maximo

que comparte con el primer estado para un valor de V' = 20, ver Fig.[I§]
Negatividad de la funcion de Wigner Im[S W] wvs b
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Figura 18: Negatividad de la funcién de Wigner del segundo estado, n = 2, en funcién
del ancho del escal6n de potencial b, donde la linea roja punteada indica el valor de b para
el cual £ = V/, para un alto del escalon V' = 5, el mdximo valor de negatividad ocurre en
b~ 2.51.

Para este mismo estado pero con un alto del escalén de V' = 20, se obtuvieron las gréficas
en la Fig.[19)a la Fig.[22]

27 PROYECTO TERMINAL I



4 DEPENDENCIA PARAMETRICA DE LAS MAGNITUDES

Entropia de Shannon de la funcion de onda vs ancho de la barrera
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Figura 19: Entropia de la funcién de onda para el segundo estado, n = 2, en funcién del
ancho del escalon de potencial b, donde la linea roja punteada indica el valor de b para
el cual £ = V, con un valor del alto del escaléon de V' = 20. Se tiene un maximo en
b~ 2.83.

Para este caso podemos ver que el maximo valor de entropia ocurre en b ~ 2.83,y se
encuentra mas alld de £ = V, de modo que podemos decir que el maximo valor de
deslocalizacién espacial ocurre cuando la particula ha sobrepasado el alto del escalon de
potencial. La entropia de la funcién de Wigner en funcién del ancho del escalén, presenta
un comportamiento similar al del estado base, es decir, no tiene un comportamiento que
pueda ser asociado a alguna otra cantidad, esto puede verse en la Fig.[20[
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Figura 20: Entropia de la funcion de Wigner del segundo estado, n2, en funcion del ancho
del escal6n de potencial b, donde la linea roja punteada indica el valor de b para el cual
E =V, con un valor del alto de potencial de V' = 20 en el que se observa un maximo en
b ~ 1.89.

Vemos que el mdximo en la entropia ocurre en b ~ 1.89, y posteriormente decrece, pero
no coincide con el valor maximo de la entropia de Shannon de la funcién de onda. ni
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coincide tampoco con el valor maximo de tunelaje, ya que como podemos ver en la Fig.
[21]1a probabilidad de tunelaje se mantiene menor a 0.2 hasta b ~ 2.20 y alcanza su valor
maximo en b ~ 2.51.
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Figura 21: Tunelaje de la funcién de onda en funcién de b, donde la linea roja punteada
indica el valor de b para el cual £ = V. Vemos que el valor maximo de tunelaje se da en
b~ 2.51 yaque en £ =V la particula ya se encuentra por encima del escalon.

En este caso la negatividad de la funcién de Wigner, es menor a 0.2 en casi todo el inter-
valo, es en b = 2.04 que empieza a aumentar hasta alcanzar su maximo en b ~ 2.67, esto
lo podemos ver en la Fig. [22]
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Figura 22: Negatividad de la funcién de Wigner del segundo estado en funcién del ancho
del escalon de potencial, para un alto del escalén V' = 5, el mdximo valor de negatividad
ocurre en b ~ 2.67.

En el caso del segundo estado cudntico, el incremento de energia modifica de forma nota-
ble la relacion entre las distintas cantidades analizadas, en comparacion con el estado base.
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Para V' = 5, el cruce £ = V ocurre en b ~ 1.88, un valor que se encuentra claramente
separado de los maximos de entropia de Shannon de la funcién de onda y de la negativi-
dad de la funcién de Wigner en la Fig. [I5]y la Fig. [I§|respectivamente. Esto implica que,
a diferencia del estado base, la deslocalizacion espacial méxima de la funcién de onda no
estd directamente asociada ni con la condicién de resonancia energética (£ ~ V') ni con
la maxima interferencia cudntica entre pozos. El hecho de que el segundo estado sea més
energético provoca que la particula pueda superar la barrera para valores mas pequefios
de b, lo que desplaza y desacopla los maximos de estas magnitudes. Ademds, la entropia
de la funciéon de Wigner muestra un maximo justamente en el punto £ = V en la Fig.
lo que sugiere que este formalismo es mds sensible a la transicién entre estados por
debajo y por encima de la barrera que la entropia calculada a partir de la funcion de onda.
El tunelaje, en cambio, alcanza su mdximo en b = 1.73 en la Fig.|17| lo que indica que su
crecimiento y disminucién responden a un mecanismo diferente al de la deslocalizacién o
la interferencia medida por la negatividad. Sin embargo, la negatividad para este caso de
V' = 5 coincide en su méximo con el de la entropia de Shannon de la funcién de onda, lo
cual puede observase en la Fig. 18|y Fig.|15|respectivamente, lo que apunta a que, aunque
los mecanismos fisicos que modulan estas cantidades sean distintos, existe una conexion
entre la maximizacion de la interferencia cudntica y la deslocalizacién espacial en este
régimen de baja altura de barrera.

Para V' = 20, el panorama es ain mds contrastante. El maximo de la entropia de Shannon
de la funcién de onda se desplaza hasta b ~ 2.83, Fig. un valor claramente superior
al correspondiente a £ = V (b =~ 2.67), lo que confirma que la mayor deslocalizacion se
produce cuando la particula ha sobrepasado la barrera y puede distribuirse libremente por
todo el sistema. Por otro lado, 1a entropia de Shannon de la funcion de Wigner en la Fig.[20]
presenta un maximo en b ~ 1.89, evidenciando nuevamente su sensibilidad a la transicién
E =~ V. En este caso, el tunelaje en la Fig. [21| permanece bajo (menor a 0.2) hasta b ~
2.20, alcanzando su mdximo en b =~ 2.51, lo que sugiere que la probabilidad de encontrar
a la particula dentro de la barrera crece mds lentamente en presencia de una barrera alta y
ancha. Finalmente, la negatividad de la funcion de Wigner en la Fig. [22] que se mantiene
reducida en gran parte del rango, empieza a incrementarse en b ~ 2.04 y alcanza su
maximo en b ~ 2.67, sin coincidir con ninguno de los picos de las otras cantidades. Este
comportamiento indica que, para un estado excitado en presencia de una barrera alta, la
interferencia cudntica significativa surge principalmente cuando la particula se encuentra
bien por encima de la barrera, y no en el umbral de cruce energético.

En conjunto, el andlisis del segundo estado muestra que la relacién entre deslocalizacién
(entropia de Shannon de la funcién de onda), interferencia cudntica (negatividad) y tran-
sicién de régimen (& ~ V') es mucho menos directa que en el estado base. La energia
mads alta provoca que la particula cruce la barrera antes de que se maximicen las demds
propiedades, y la altura de la barrera modula de manera diferenciada los puntos de méxi-
mo para cada cantidad. Esto sugiere que, mientras en el estado base existe una correlacion
maés clara entre estos indicadores, en estados excitados el desacoplamiento es la norma, y
la funcion de Wigner revela de forma mads precisa la sensibilidad del sistema a la transi-
ciéon £/ ~ V, mientras que la funcién de onda captura mejor la deslocalizacién global del
estado.

30 PROYECTO TERMINAL I



4 DEPENDENCIA PARAMETRICA DE LAS MAGNITUDES

Cuando se comparan los resultados para los tres primeros estados, se observa un cambio
progresivo en la relacion entre las cantidades estudiadas. En el estado base (n = 1), los
maximos de entropia, probabilidad de tunelaje y negatividad de la funcién de Wigner se
alinean de forma clara alrededor del punto £/ ~ V. Esto sugiere que, en este régimen, la
deslocalizacion cudntica, la interferencia y el cruce energético estan fuertemente acopla-
dos, describiendo la transicion de un estado localizado a uno deslocalizado.

En el segundo estado (n = 2), esta coincidencia comienza a romperse. Si bien la entropia
de Shannon de la funcién de onda sigue mostrando un maximo cerca del cruce £ ~ V,
los picos de la negatividad y la probabilidad de tunelaje se desplazan a valores distintos
de b. Esto indica que, para estados excitados, la interferencia cudntica no necesariamente
se maximiza en el umbral de cruce energético, sino que responde a una estructura nodal
mas compleja de la funcién de onda, la cual interactia de manera diferente con la barrera
de potencial.

De nuestro estudio de estados superiores se obtuvo que en el tercer estado (n = 3), el
patron se degrada atn mds. Aqui, las entropias y la negatividad presentan irregularidades
numéricas y carecen de suavidad como funciones de los pardmetros, llegando incluso a
asignar valores diferentes para un mismo valor de b. Esto no solo refleja limitaciones
numeéricas, sino también una creciente sensibilidad del sistema: al aumentar n, la funcion
de onda presenta mds nodos y regiones de interferencia, lo que amplifica la dependencia
de las cantidades cudnticas frente a pequenas variaciones de pardmetros y a la resolucion
numérica empleada. Estas cantidades se pueden visualizar en el Apéndice

En conjunto, estos resultados muestran que la relacion clara entre las magnitudes estu-
diadas, presente en el estado base, se diluye conforme aumenta el nimero cuédntico. En
estados excitados, la fisica del doble pozo se vuelve mads rica pero también mds dificil
de caracterizar con un unico indicador, y la interpretacion de la funcion de Wigner y sus
medidas derivadas requiere considerar la estructura de la funcion de onda y la sensibilidad
numérica inherente a estos sistemas.
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5. Conclusiones

El presente trabajo tuvo como objetivo estudiar la relacion entre la distribucion espacial
de los estados cudnticos en un potencial de doble pozo y medidas asociadas a su com-
portamiento cudntico. Para ello, se resolvié la ecuacion de Schrodinger independiente del
tiempo para obtener las funciones de onda correspondientes a los primeros estados del
sistema, a partir de las cuales se calcularon: la funcién de onda, la funciéon de Wigner, la
entropia de Shannon de la funcién de onda, la entropia de Shannon de la funcioén de Wig-
ner, la probabilidad de tunelaje y la negatividad de la funcion de Wigner. Estas medidas
permiten, respectivamente, evaluar el grado de localizacion o deslocalizacién espacial, la
capacidad de la particula de atravesar la barrera de potencial, y la presencia de interferen-
cia cudntica.

El anadlisis se enfoco en determinar como varian estas magnitudes en funcién de los para-
metros del sistema, particularmente la altura V' y el ancho b de la barrera, y en identificar
posibles correlaciones entre ellas. En el primer estado del doble pozo de potencial, el ana-
lisis mostré que el maximo de entropia de Shannon de la funcién de onda se desplaza
con el aumento de V" hasta coincidir con el punto donde £ ~ V. En ese mismo régimen,
la probabilidad de tunelaje y la negatividad de la funcion de Wigner presentan maximos
coincidentes, lo que indica una clara correlacion entre la capacidad de la particula pa-
ra atravesar la barrera y la presencia de interferencia cudntica no cldsica (negatividad de
Wigner). Sin embargo, la entropia de Shannon de la funcién de Wigner no mostré patrones
claros que pudieran asociarse a las otras magnitudes.

En el segundo estado, los resultados mantienen la correlacion entre maximos de negati-
vidad y tunelaje, pero la posicidén de dichos maximos cambia respecto al primer estado,
en parte porque la funcién de onda ya no estd tan confinada y presenta un cardcter mas
extendido. Esto implica que la relacién entre el punto de maxima interferencia cudntica y
las condiciones geométricas del potencial depende fuertemente del nimero cudntico.

En el tercer estado, las irregularidades numéricas en las entropias y la negatividad, asi
como su falta de comportamiento suave frente a los pardmetros, sugieren que la naturale-
za del estado es mds compleja. La energia elevada favorece un estado mas extendido, lo
que reduce la localizacién espacial y hace que pequefias variaciones numéricas o de para-
metros tengan un efecto notable en las cantidades calculadas. Estas fluctuaciones pueden
deberse tanto a la naturaleza del estado como a limitaciones en la resolucién numérica o
el método de integracion.

Es importante remarcar que el objetivo de este estudio era poder hacer el andlisis de un
sistema de dos particulas indistinguibles en este sistema, ya fueran bosénicas o fermidni-
cas, pero dada la complejidad de este problema, no fue posible alcanzar este objetivo que
resulto ser desafiante.

En conjunto, el estudio muestra que existe una correlacion robusta entre la probabilidad
de tunelaje y la negatividad de la funcion de Wigner para los estados analizados, especial-
mente en los regimenes donde la energia F se aproxima o supera a la altura del potencial
V. Asimismo, la entropia de Shannon de la funcion de onda logra capturar transiciones
geométricas claras en el sistema, mientras que la entropia asociada a la funcién de Wigner
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no presenta patrones universales. Por otro lado, se observa que a mayor niimero cudntico
los estados tienden a comportarse de manera mds extendida, mostrando menor sensibili-
dad a la barrera en términos de localizacion, pero exhibiendo una mayor complejidad en
los patrones de interferencia cudntica, lo que puede dar lugar a resultados numéricamente
irregulares.

Cabe sefialar que, inicialmente, se contempl6 extender el andlisis hacia un sistema de dos
particulas indistinguibles ya fueran bosénicas o fermionicas confinadas en el doble pozo
de potencial. Sin embargo, la complejidad matemdtica y computacional que implica este
problema excedi6 el alcance del presente trabajo, convirtiéndose en un reto que debera
abordarse en investigaciones posteriores.
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A CONSTANTES DE NORMALIZACION

A. Constantes de normalizacion
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Figura 23: Entropia para una particula del tercer estado, n = 3, en funcion del ancho
de barrera b, y un alto del escalén de potencial de V' = 5, si bien es una funcién bien
comportada, no es posible establecer una correspondencia entre la entropia como una
medida de deslocalizacion al variar el ancho del escalén y analizar al mismo tiempo el
tunelaje ya que la particula sube la barrera para valores muy pequefios de b.

Entropia de la funcién de Wigner Re[S_W] vs Tunneling
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Figura 24: Entropia de la funcién de Wigner del tercer estado en funcién del tunelaje, en
este caso se observa que existe una region en la que no es posible establecer un compor-
tamiento claro, ya que la probabilidad de tunelaje no tiene sentido a partirde £ = V, ya
que la particula experimenta interaccion con el alto del escalon.
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Entropia de Shannon de la funcion de onda vs Tunneling
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Figura 25: Entropia de Shannon de la funcién de onda en funcién del tunelaje, para el
tecer estado n = 3y V' = 5, se hace énfasis en el hecho de que el tunelaje, no tiene
sentido cuando £ = V' ya que como se menciond la particula en ese punto deja de estar
por debajo de la barrera.
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