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1 RESUMEN

1. Resumen

En este trabajo se estudia el comportamiento cuántico de una partícula confinada en un
potencial de doble pozo con un escalón central, analizando cómo varían distintas magnitu-
des en función del ancho y la altura de dicho escalón. Se emplean tanto la función de onda
como la función de Wigner para caracterizar los estados cuánticos, evaluando indicadores
como la entropía de Shannon, la entropía asociada a la función de Wigner, la probabilidad
de tunelaje y la negatividad de la función de Wigner. Se consideran dos niveles de ener-
gía y diferentes regímenes de potencial, lo que permite identificar patrones de correlación
entre estas cantidades, así como cambios abruptos relacionados con el cruce de energía E
con la altura del potencial V . El análisis revela diferencias sustanciales entre estados de
baja y alta energía, así como limitaciones numéricas en estados más energéticos debido a
su carácter más extendido y a la complejidad de las interferencias cuánticas.

Palabras clave: Mecánica cuántica, Espacio fase cuántico, Potencial de doble pozo, Fun-
ción de Wigner, Entropía de Shannon, Negatividad, tunelaje.
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2 INTRODUCCIÓN

2. Introducción

La mecánica cuántica surge a principios del siglo XX como una rama de la física para
describir el comportamiento de fenómenos a nivel microscópico, ya que la mecánica clá-
sica no podía describir de manera apropiada ciertos fenónemos tales como la radiación
de cuerpo negro, el efecto fotoeléctrico o la estabilidad de los átomos. Esta rama impulsó
la búsqueda de nuevos conceptos para brindar una explicación. El primer descubrimiento
llegó alrededor del año 1900 cuando Max Planck introdujo el concepto de cuanto [9],
postulando que el intercambio de energía entre la radiación y sus alrededores se da en
forma de paquetes cuantizados [3]. En 1905, Albert Einstein ayudó a consolidar el con-
cepto de cuanto propuesto por Planck [10], reconociendo que la cuantización de ondas
electromagnéticas también debía ser válida para la luz, de modo que propuso que la luz
en sí misma está hecha de pequeños pedazos de energía o pequeñas partículas llamadas
fotones, dando la oportunidad a Einstein de dar una explicación al efecto fotoelétrico.
Estos trabajos así como el realizado por Arthur Compton [13] dieron las bases teóricas
y experimentales para el desarrollo de la mecánica cuántica. Una partícula confinada en
una caja es uno de los sistemas más simples a estudiar en mecánica cuántica, el análisis
de este tipo de sistemas tiene su origen en la segunda década del siglo XX con el origen
de la mecánica cuántica, con la formulación ondulatoria propuesta por Erwin Schrödinger
[14], este permite analizar fenómenos fundamentales de la mecánica cuántica, tales como
estados estados ligados y la cuantización de energía.

En este proyecto se estudia un sistema de una partícula confinada en un doble pozo de
potencial, con el objetivo de construir y analizar su función de Wigner [19]. Esta herra-
mienta matemática establece un vínculo entre la descripción ondulatoria de la mecánica
cuántica y la representación probabilística en el espacio de fases, ofreciendo una pers-
pectiva que permite visualizar simultáneamente información de posición y momento sin
abandonar la naturaleza cuántica del sistema. Este “puente” es valioso porque, aunque en
mecánica clásica el estado de una partícula se describe de forma precisa por un punto en
el espacio de fases, en el dominio cuántico las restricciones impuestas por el principio de
incertidumbre [20] impiden una descripción idéntica, y la función de Wigner ofrece una
forma de explorar esas diferencias de manera cuantitativa.

El doble pozo de potencial es especialmente interesante en este contexto porque combina
fenómenos de confinamiento y de tunelaje, lo que genera patrones de interferencia y co-
rrelaciones no clásicas en el espacio de fases que la función de Wigner puede capturar de
forma directa. Analizar este tipo de sistema no solo permite caracterizar la transición entre
estados localizados y deslocalizados, sino también identificar manifestaciones claras de la
no clasicalidad, como la aparición de regiones negativas en la función de Wigner. De este
modo, el estudio ofrece una ventana para comprender cómo la estructura del potencial y
la energía del estado influyen en la naturaleza cuántica del sistema.

2.1. Ecuación de Schrödinger

A principios del siglo XX, los modelos atómicos clásicos como el propuesto por Niels
Bohr 16, habían logrado explicar ciertos aspectos del átomo de hidrógeno; este postulaba
que la materia poseía propiedades ondulatorias y sentó las bases para que se reconsiderara
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2.1 Ecuación de Schrödinger 2 INTRODUCCIÓN

la naturaleza de la partícula. Inspirado por esas ideas, Erwin Schrödinger 14 introdujo una
ecuación diferencial en la que la función de onda Ψ(r⃗, t) no era más que una herramienta
matemática para predecir la probabilidad de encontrar una partícula en determinada región
del espacio.

Esta nueva ecuación respondía a una necesidad crucial, explicar por qué los átomos poseen
niveles discretos de energía y cómo se organiza la distribución de los electrones en los
orbitales. En su forma general, la ecuación de Schrödinger dependiente del tiempo para
una partícula de masa m en un potencial V (r⃗, t) se expresa como:

iℏ
∂Ψ(r⃗, t)
∂t

=
[
− ℏ2

2m∇2 + V (r⃗, t)
]

Ψ(r⃗, t). (2.1)

Donde el operador ∇2 es el Laplaciano, este término representa la energía cinética del
sistema y tiene la siguiente forma:

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , (2.2)

V (r⃗, t) corresponde al potencial externo que actúa sobre la partícula; este puede depender
tanto del tiempo como de la posición, y representa la energía potencial del sistema.

Para sistemas en estado estacionario, se asume una solución separable en función espacial
y temporal Ψ(r⃗, t) = ψ(r⃗)e−iEt

ℏ , que lleva a la ecuación de Schrödinger independiente del
tiempo:

− ℏ2

2m∇2ψ(r⃗) + V (r⃗)ψ(r⃗) = Enψ(r⃗). (2.3)

Esta ecuación se formula como un problema de valores propios, donde las funciones de
onda ψn(r⃗) son las funciones propias y los correspondientes valores En constituyen el
conjunto de niveles de energía permitidos. Así, cada índice n identifica un valor propioEn,
y la cuantización de la energía se deriva de las condiciones de contorno y normalización
que restringen las soluciones no triviales 14. La normalización de la función de onda y la
imposición de condiciones de contorno como las asociadas a este problema en las cuales
la función se anula en regiones para las cuales V → ∞, garantizan que las soluciones
sean físicamente aceptables.

Para sistemas ideales como una partícula en un pozo infinito de potencial, o un osci-
lador armónico, las soluciones del sistema son analíticas. Entre estos, el problema del
doble pozo cuadrado de potencial infinito de igual forma representa un caso en el que las
soluciones de la ecuación de Schrödinger pueden obtenerse de forma analítica en cada
región del potencial; sin embargo, la imposición de las condiciones de frontera en este
problema origina ecuaciones trascendentales para los valores propios (energías), es decir,
estas ecuaciones implican expresiones en las que las funciones trigonométricas y expo-
nenciales se combinan con los parámetros energéticos y para las cuales las soluciones
deben encontrarse mediante métodos numéricos. Esto representa un problema de valores
propios en los que existen infinitas raíces, para estos hay algoritmos como el método de
Newton-Raphson 15 que requiere tener una estimación inicial, y si la estimación inicial
no es buena esto podría llevar a una convergencia errónea o incluso a una divergencia en
el cálculo.
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2.2 Función de Wigner 2 INTRODUCCIÓN

La descripción cuántica de sistemas físicos, como la obtenida a partir de la ecuación de
Schrödinger, fundamenta la comprensión de la función de onda como la herramienta esen-
cial para conocer el comportamiento y las probabilidades asociadas a las partículas. Sin
embargo, la interpretación y análisis de estos estados cuánticos pueden enriquecerse con
representaciones alternativas que permitan una visión más cercana a la intuición clásica,
sin perder la esencia cuántica. En este contexto, surge la función de Wigner, que ofrece
una representación en el espacio fase y permite estudiar de manera más directa fenómenos
como la interferencia cuántica y la no clasicalidad inherente al comportamiento micros-
cópico.

2.2. Función de Wigner

Esta función fue concebida en 1932 por Eugene Wigner [19] con el objetivo de estudiar las
correcciones cuánticas a la mecánica estadística clásica. Fundamentalmente, se buscaba
reemplazar la función de onda, por una distribución de probabilidad en el espacio fase.
En la física clásica, el estado de un sistema se describe mediante un punto en un espacio
de fases de 6N dimensiones (para N partículas), definido por sus posiciones y momentos.
La función de Wigner representa una intento para conciliar la intuición clásica del espacio
de fases con la no clasicalidad de la mecánica cuántica. En una dimensión, esta función
se construye de la siguiente manera:

W (x, p) = 1
ℏπ

∫ ∞

−∞
ψ∗ (x+ y)ψ (x− y) e

2ipy
ℏ dy. (2.4)

Esta es una función real, cuyas marginales son el cuadrado de la función de onda en
espacios de posición |ψ(x)|2 y en espacio de momentos |ψ(p)|2, estas marginales son dis-
tribuciones de probabilidad que se obtienen al integrar toda la información sobre una de
las variables del sistema que en este caso son las posiciones y momentos (x, p). Aseguran-
do así que pese a describir simultáneamente posición y momento, respeta los resultados
habituales de la mecánica cuántica cuando nos fijamos solo en una de las variables. Como
consecuencia, si se integra W (x, p) sobre todo el espacio de fases, el resultado es igual a
1, lo que expresa que la función está normalizada y que la probabilidad total de encontrar
la partícula en algún lugar del espacio, con algún momento, es siempre la unidad [21], i.e:∫

W (x, p)dp = |ψ(x)|2, (2.5)∫
W (x, p)dx = |ψ(p)|2, (2.6)∫
W (x, p)dxdp = 1. (2.7)

Esta función es clasificada como una distribución de cuasi-probabilidad, y este término
es crucial ya que a diferencia de una distribución de probabilidad clásica que siempre es
no negativa, la función de Wigner puede tomar valores negativos. Esta es la característica
fundamental de esta función, lo cual sirve como indicador de la no clasicalidad de un
estado. En 2004, Anatole Kenfack y Karol Życzkowski [22] definieron el volumen de las
regiones negativas como un indicador de no clasicalidad como:

N(W ) =
∫ ∫

|W (x, p)|dxdp− 1, (2.8)

5 PROYECTO TERMINAL I



2.3 Teoría de la información 2 INTRODUCCIÓN

que para estados coherentes puros vale cero. Los estados coherentes son estados cuya
dinámica, se asemeja a la de un oscilador armónico clásico, cuyas soluciones son Gaus-
sianas [23]. Entonces para estados Gaussianos, la negatividad es cero.

Estos valores negativos indican interferencia cuántica y no se observan en sistemas pu-
ramente clásicos. Por ejemplo, la función de Wigner de un estado de "gato" muestra dos
picos Gaussianos con franjas de interferencia entre ellos que albergan regiones negativas.

La negatividad de la función de Wigner no solo es un indicador teórico de la no clasica-
lidad, en el procesamiento cuántico se le considera un recurso [24]. A diferencia de los
enfoques basados en "qubits", donde la información cuántica se codifica en sistemas de
dos niveles, el cómputo cuántico de variables continuas utiliza modos bosónicos, como
los del campo electromagnético, cuyas variables de posición y momento son continuas
25.

Incorporar medidas de teoría de la información como entropías de Shannon aporta una
forma alterna de cuantificar la negatividad de la función de Wigner, separando las contri-
buciones de las zonas positivas y negativas, transformando la interferencia cuántica en un
recurso capaz de calificarse, y consumirse en protocolos de cómputo.

2.3. Teoría de la información

La teoría de la información tuvo su origen en la primera mitad del siglo XX, cuando Clau-
de Shannon estableció sus fundamentos [11]. Este marco teórico se centró en el estudio de
los mecanismos mediante los cuales la información se transmite, procesa y almacena en
diversos sistemas de comunicación. Un concepto fundamental dentro de esta teoría es la
entropía, que se utiliza como medida cuantitativa de la incertidumbre asociada a un con-
junto de datos o eventos. En su formulación discreta, la entropía de Shannon se expresa
como:

S = −
∑
k

pk log pk, (2.9)

donde pk representa la probabilidad del suceso k.

Considerando que la función de onda en mecánica cuántica admite una interpretación pro-
babilística, es posible establecer un vínculo directo entre la teoría de la información y la
descripción cuántica de los sistemas [2]. En este contexto, la entropía de Shannon puede
entenderse como una medida del grado de incertidumbre en la descripción del estado, esta
interpretación fue dada por Iwo Białynicki-Birula y Jan Mycielski [31], quienes propu-
sieron cuantificar la incertidumbre usando la entropía diferencial de Shannon (Ec. 2.11)
tanto para las distribuciones de posición y momento, ya que estas miden la dispersión en
cada variable, a mayor entropía mayor incertidumbre o deslocalización en alguna de las
variables [1]. En su artículo el resultado central es una desigualdad análoga a la presentada
por Werner Heisenberg [20]:

Sx + Sp ≥ 1 + log π. (2.10)

Esta desigualdad implica que no se puede reducir arbitrariamente la suma de incertidum-
bres informacionales en posición y momento ya que si la entropía de posición disminuye
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(distribución muy localizada), entonces la entropía de momento debe aumentar (distribu-
ción extendida), y viceversa. Así, si una distribución está muy localizada, la mayor parte
de la probabilidad se concentra en una región pequeña; mientras que en una distribución
más extendida o “deslocalizada”, la probabilidad se reparte sobre un dominio más amplio.

La naturaleza estadística de los resultados de medición en mecánica cuántica hace que la
definición de entropía de Shannon se integre de forma natural, bastando con utilizar las
probabilidades derivadas de la función de onda para su cálculo.

Dado que el módulo al cuadrado de la función de onda define una distribución de pro-
babilidad continua, es necesario adoptar la versión continua de la entropía de Shannon
[3]:

S = −
∫ ∞

−∞
p(x) log p(x) dx, (2.11)

donde p(x) = |ψ(x)|2 corresponde a la densidad de probabilidad en el espacio de posi-
ciones.

En este sentido, extender el concepto de entropía a descripciones cuánticas en el espacio
de fases conduce de manera natural al uso de la función de Wigner como herramienta.
Esta función permite representar el estado cuántico en términos de una cuasi-distribución
en el espacio (x, p), proporcionando así un puente entre la descripción probabilística y la
dinámica cuántica.

La función de Wigner, al ser una distribución de cuasi-probabilidad que puede dar valores
negativos, presenta características que no se encuentran en distribuciones de probabili-
dad convencionales. Esta peculiaridad es fundamental para representar la interferencia
cuántica y la no clasicalidad del sistema, pero también genera ciertas complicaciones al
momento de calcular magnitudes basadas en funciones logarítmicas, como es el caso de
la entropía. En particular, la presencia de regiones negativas en W (x, p) implica que el
cálculo del logaritmo natural, requerido para la definición de la entropía, debe manejarse
con cuidado. Para ello, se adopta la convención de trabajar en la rama principal del loga-
ritmo complejo, lo que permite extender la definición de entropía a la función de Wigner
a pesar de sus valores negativos. De esta forma, la entropía de la función Wigner, aunque
puede tomar valores complejos, sigue siendo una herramienta útil para analizar y cuanti-
ficar la interferencia y las propiedades cuánticas del sistema. Para calcular la entropía de
Shannon de la función de Wigner, lo hacemos con la Ec. 2.12.

sw = −
∫
W (x, p) logW (x, p) dx dp. (2.12)

Calcular esta entropía resulta de gran importancia, ya que permite cuantificar el grado
de no clasicalidad del estado cuántico desde una perspectiva de teoría de la información.
Mientras que la función de Wigner ofrece una representación completa del estado en el
espacio de fases, su entropía proporciona una medida cuantitativa de la incertidumbre
inherente a esa representación. Esto permite diferenciar entre estados más localizados y
aquellos con mayor extensión o superposición en el espacio de fases, reflejando fenóme-
nos cuánticos como la interferencia.
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Desarrollando la Ec. 2.12 dividiendo la entropía en regiones donde la función de Wigner
es positiva (W+) y negativa (W−):

sw = −
∫
W+(x, p) logW+(x, p)dxdp

−
∫
W−(x, p) logW−(x, p)dxdp− iπ

∫
W−(x, p)dxdp.

(2.13)

Las primeras dos integrales en la Ec. 2.13 representan respectivamente la entropía de
Shannon para las regiones donde la función de Wigner es positiva y negativa. Esto no es
una entropía de una distribución de probabilidad en el sentido clásico, ya que como se
mencionó, la función de Wigner es una distribución de cuasi-probabilidad, pero al separar
las regiones positivas y negativas, se puede aplicar la noción de entropía de Shannon por
partes.

Así, la primera integral mide la información clásica asociada con la región positiva de
W (x, p), la segunda aplica la misma idea pero sobre la región negativa y el tercer término
(parte imaginaria) es proporcional al volumen de las regiones negativas.

VW− ∝
∫
W−(x, p)dxdp (2.14)

La Ec. 2.13 permite descomponer el comportamiento real (entropía positiva), del compor-
tamiento cuántico (negatividad e interferencia), siendo también una conexión con la teoría
de recursos, donde como se mencionó, la negatividad se considera un recurso computacio-
nal.

2.4. Tunelaje

El fenómeno de tunelaje fue reconocido desde los primeros años del desarrollo de la
mecánica cuántica. Friedrich Hund en 1927 [26] al aplicar la ecuación de Schrödinger a
un potencial de doble pozo, identificó la posibilidad de que un estado cuántico oscilara
entre pozos sin superar el máximo energético. Poco después, Nordheim y Fowler [27]
exploraron el tunelaje en el contexto de la emisión electrónica desde metales, postulando
que los electrones pueden atravesar una barrera superficial bajo energías próximas a la
barrera. Una de las primeras aplicaciones de gran impacto fue la explicación teórica de la
desintegración alfa por tunelaje, desarrollada por George Gamow [18].

El tunelaje se formaliza mediante la ecuación de Schrödinger independiente del tiempo
para una partícula de masa m que incide sobre una barrera de potencial rectangular de
altura V0 y ancho b:

− ℏ2

2m
d2ψ(x)
dx2 + V0ψ(x) = Eψ(x). (2.15)

Si E < V0, la solución dentro de la barrera se describe como:

ψ(x) = Ae−κx +Beκx, κ =

√
2m(V0 − E)

ℏ
. (2.16)
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Imponiendo condiciones de continuidad para ψ y su derivada en los límites de la barrera,
se obtiene el coeficiente de transmisión T mediante:

T = |t|2 ≈ 16E(V0 − E)
V 2

0
e−2κb, (2.17)

en el régimen de barrera ancha y alta, revelando una dependencia exponencial de la pro-
babilidad de transmisión con el ancho y la altura de la barrera.

El fenómeno de tunelaje cuántico ha sido esencial en la interpretación de desintegración
nuclear, emisión electrónica y en tecnologías como los diodos, el tunelaje en supercon-
ductores y el microscopio de efecto túnel. Estos avances fueron reconocidos con Premios
Nobel, otorgados a Esaki [28], Giaever [29] y Josephson [30] respectivamente.

En esta investigación, la probabilidad de tunelaje se calcula mediante la función de onda
y su extensión a través de la barrera con la Ec. 2.18.

p (x, λn) =
∫ x2

x1
|ψn(x, λn)|2 dx, (2.18)

La ecuación de Schrödinger es fundamental para describir los estados cuánticos de una
partícula y determinar sus funciones de onda, que contienen la información necesaria para
conocer la distribución de probabilidad en el espacio. Para complementar esta descripción
y capturar aspectos característicos de la naturaleza cuántica, como la interferencia y la co-
herencia, se utiliza la función de Wigner, una representación que, aunque derivada de la
función de onda, permite identificar regiones donde se manifiestan efectos exclusivamente
cuánticos a través de la presencia de valores negativos. La teoría de la información propor-
ciona herramientas valiosas para cuantificar estas características, mediante medidas que
evalúan la no clasicalidad del sistema. En este contexto, el fenómeno de tunelaje puede
ser analizado desde la función de onda y desde estas medidas de información, dando así
una visión más completa de su naturaleza cuántica. Esta interrelación entre funciones de
onda, representación de Wigner, teoría de la información y tunelaje motiva el desarrollo
del presente trabajo.
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3 DOBLE POZO INFINITO

3. Doble pozo infinito

Una vez dado el contexto y los fundamentos teóricos del trabajo, se procede a explicar el
planteamiento del problema.

Se tiene una partícula confinada en la siguiente región de potencial.

π
2 − b

2
π
2 + b

2
π

V0

∞ ∞

x

V (x)

Figura 1: Doble pozo cuadrado de potencial de paredes infinitas y longitud π centrado en
π
2 con una barrera de ancho b y alto V0.

Cuyas regiones son las siguientes:

V (x) =


∞, x ≤ 0 o x ≥ π,

0, 0 < x < π
2 − b

2 ,

V0,
π
2 − b

2 ≤ x ≤ π
2 + b

2 ,

0, π
2 + b

2 < x < π.

(3.1)

Este potencial representa un doble pozo cuadrado infinito con una barrera rectangular
centrada en x = π

2 , cuya presencia permite el tunelaje entre las dos subregiones y cuya
descripción está dada por la ecuación de Schrödinger independiente del tiempo.

− ℏ2

2m
d2ψ(x)
dx2 + V (x)ψ(x) = Enψ(x). (3.2)

Dividimos este problema en tres regiones de interés.

V (x) =


0, 0 < x < π

2 − b
2 ,

V0,
π
2 − b

2 ≤ x ≤ π
2 + b

2 ,

0, π
2 + b

2 < x < π.

(3.3)

Se considerarán unidades atómicas, es decir, ℏ = 1 y m = 1, y para las cuales la ecuación
de Schrödinger tiene la siguiente forma.

Para la primera región la ecuación de Schrödinger toma la siguiente forma en la Ec. 3.4:

−1
2
d2ψ1(x)
dx2 = Enψ1(x). (3.4)
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Se define entonces λn
λ2
n = 2En.

La solución de esta ecuación será en términos de senos y cosenos.

ψ1(x) = A sin λnx+B cosλnx. (3.5)

Para la segunda región la ecuación de Schrödinger será de la siguiente forma en la Ec.
3.6:

−1
2
d2ψ2(x)
dx2 + V0ψ2(x) = Enψ2(x). (3.6)

Se define κ en términos de λ como:

κ2
n = 2V0 − λ2

n.

Para regiones en las que la energía del sistema sea menor que la barrera de potencial
(E < V0) se tendrán soluciones reales.

ψ2(x) = eκnx. (3.7)

Cuyas soluciones serán:

ψ2(x) = C sinh κnx+D cosh κnx. (3.8)

Para la tercera región, las soluciones serán muy parecidas a las obtenidas en la primera
región.

−1
2
d2ψ3(x)
dx2 = Enψ3(x). (3.9)

ψ1(x) = A sin λn(π − x) +B cosλn(π − x). (3.10)

Por lo tanto, el conjunto de soluciones para cada región del espacio es el siguiente:

ψ(x) =


A sin λnx+B cosλnx, 0 < x < π

2 − b
2 ,

C sinh κnx+D cosh κnx, π
2 − b

2 ≤ x ≤ π
2 + b

2 ,

A sin λnx+B cosλnx, π
2 + b

2 < x < π.

(3.11)

Es necesario analizar la forma de la función en las distintas regiones poniendo ciertas
condiciones de frontera y, a partir de aquí, determinar las constantes y los valores propios,
es decir, las energías. Así mismo, se debe considerar la paridad de la función de onda,
ya que esta dará posteriormente los estados energéticos de la función. Para estados con
número cuántico n = 2l − 1 se asociarán estados pares de la función de onda, y para
estados con número cuántico n = 2l se asociarán estados impares de la función de onda,
i.e., para soluciones pares consideraremos soluciones en la región central asociadas al co-
seno hiperbólico, y para soluciones impares serán aquellas asociadas al seno hiperbólico.
De igual manera se obtendrán dos conjuntos de soluciones asociadas a las constantes de
normalización, un conjunto para las regiones pares, y otro para las impares. Se comenzará
haciendo el análisis para la región par.

En x = 0 se debe cumplir que
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ψ1(0) = 0. (3.12)

Evaluando la función:

ψ1(0) = A sin λn0 +B cosλn0 = 0. (3.13)

Resultando así que B = 0, entonces ψ1(x) = A1 sin λnx.

Para la segunda región, la función de onda será:

ψ2(x) = D cosh κnx. (3.14)

La solución en esta región debe estar centrada en π
2 de modo que al evaluarla en el centro,

esta se anule, por lo que ψ2 es:

ψ2(x) = D cosh κn
(
x− π

2

)
. (3.15)

En x = π debe cumplirse que la función de onda debe anularse, ψ3(π) = 0
ψ3(π) = A sin λnπ +B cosλnπ. (3.16)

Esto tiene un grave problema ya que la condición para que esto se anule está completa-
mente en λn, por lo que es necesario escribir la función de onda de tal forma que en ese
intervalo al llegar a π se anule, por lo tanto, la función tendría la siguiente forma:

ψ3(x) = A sin λn(π − x) +B cosλn(π − x). (3.17)

De esta forma, si evaluamos la función de onda en π

ψ3(π) = A sin λn0 +B cosλn0. (3.18)

Por lo que para esta región B también es cero, entonces

ψ3(x) = A1 sin λn(π − x). (3.19)

Por lo tanto, el conjunto de soluciones para la región par es:

ψ(x, λn) =


A1 sin λnx, 0 < x < π

2 − b
2 ,

D cosh κn(x− π
2 ), π

2 − b
2 ≤ x ≤ π

2 + b
2 ,

A1 sin λn(π − x), π
2 + b

2 < x < π.

(3.20)

Se debe garantizar la continuidad de la función de onda en todas las regiones del pozo de
potencial; por lo tanto, es necesario considerar las siguientes condiciones de continuidad:

ψ1

(
π

2 − b

2

)
= ψ2

(
π

2 − b

2

)
, (3.21)

ψ2

(
π

2 + b

2

)
= ψ3

(
π

2 + b

2

)
, (3.22)

ψ′
1

(
π

2 − b

2

)
= ψ′

2

(
π

2 − b

2

)
, (3.23)

ψ′
2

(
π

2 + b

2

)
= ψ′

3

(
π

2 + b

2

)
. (3.24)
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De la primera condición se obtiene:

A1 sin λn
(
π − b

2

)
= D cosh κn

b

2 . (3.25)

De la segunda condición se obtiene:

A1 sin λn
(
π − b

2

)
= D cosh κn

b

2 . (3.26)

Y es obvio que se obtiene la misma ecuación que en el primer intervalo, por lo que hay
que considerar la continuidad de las derivadas de la función de onda:

A1λn cosλn
(
π − b

2

)
= −Dκn sinh κn

b

2 . (3.27)

Para la última región:

A1λn cosλn
(
π − b

2

)
= −Dκn sinh κn

b

2 . (3.28)

Se obtiene la misma ecuación, por lo que haciendo el cociente entre las ecuaciones 3.26
y 3.28, obtenemos una ecuación trascendental para determinar λn.

λn cotλn
(
π − b

2

)
= −κn tanh κn

b

2 . (3.29)

Cuya solución debe ser determinada de forma numérica. Estas soluciones para λ corres-
ponden a los niveles energéticos. Como es bien sabido, la función de onda por su in-
terpretación estadística como densidad de probabilidad, debe cumplir con la siguiente
condición: ∫ ∞

−∞
|ψ(x)|2dx = 1. (3.30)

Es decir, esta función debe estar normalizada. Por lo que la condición de normalización
para esta solución es la siguiente:

∫ π−b
2

0
(A1 sin λnx)2dx+

∫ π+b
2

π−b
2

(D cosh κn(x− π

2 ))2dx+
∫ π

π+b
2

(A1 sin λn(π − x))2dx = 1.
(3.31)

Teniendo entonces un sistema de 2 ecuaciones para dos variables, A1 y D, que son las
respectivas constantes de normalización que serán función del potencial V0, de b y de λ,
cuya expresión completa está en el apéndice A.

Pasando ahora al caso impar, en la región central se tendrá una función −C sinh κn(π2 − x),
y en la tercera región habrá un cambio de signo, es decir, tendremos −A2 sin λn(x− π)
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así como las siguientes condiciones de frontera y las respectivas constantes de normaliza-
ción:

ψ1

(
π

2 − b

2

)
= ψ2

(
π

2 − b

2

)
, (3.32)

ψ2

(
π

2 + b

2

)
= ψ3

(
π

2 + b

2

)
, (3.33)

ψ′
1

(
π

2 − b

2

)
= ψ′

2

(
π

2 − b

2

)
, (3.34)

ψ′
2

(
π

2 + b

2

)
= ψ′

3

(
π

2 + b

2

)
. (3.35)

∫ π−b
2

0
(A2 sin λnx)2dx+

∫ π+b
2

π−b
2

(C sinh κn
(
π

2 − x
)

)2dx+
∫ π

π+b
2

(A2 sin λn(x− π))2dx = 1.
(3.36)

De las condiciones de continuidad obtendremos las siguientes ecuaciones:

A2 sin λn
(
π − b

2

)
= C sinh κn

b

2 . (3.37)

De la segunda condición se obtiene:

A2 sin λn
(
π − b

2

)
= C sinh κn

b

2 . (3.38)

De la tercera y cuarta condición se tiene:

A2λn cosλn
(
π − b

2

)
= −Cκn cosh κn

b

2 . (3.39)

Dando entonces un sistema de 2 ecuaciones para dos variables,A2 yC, que son las respec-
tivas constantes de normalización para funciones impares que serán función del potencial
V0, de b y de λn, cuya expresión completa está expresada en el apéndice A. Ahora, si se
dividen estas dos ecuaciones se obtiene la siguiente ecuación trascendental:

λn cotλn
(
π − b

2

)
= −κn coth κn

b

2 . (3.40)

Que es crucial para encontrar las respectivas raíces para las soluciones impares. De modo
que el conjunto de soluciones para esta región es el siguiente:

ψ(x, λn) =


A2 sin λnx, 0 < x < π

2 − b
2 ,

−C sinh κn
(
x− π

2

)
, π

2 − b
2 ≤ x ≤ π

2 + b
2 ,

A2 sin λn(π − x), π
2 + b

2 < x < π.

(3.41)

Una vez hecho este análisis es posible dar la función de onda, para este trabajo se consi-
deraron dos números cuánticos, es decir, consideraremos que n va de 1 a 2, por lo tanto
las funciones de onda para cada uno de estos valores están graficadas en la Fig. 2 y la

14 PROYECTO TERMINAL I



3 DOBLE POZO INFINITO

Fig. 3. Los estados se clasifican por su paridad: los valores n = 2l − 1 corresponden a
funciones de onda pares y los valores n = 2l a funciones impares. El estado base (n = 1)
no muestra ningún nodo (Fig. 2), el primer excitado (n = 2) presenta un nodo en el centro
y lóbulos de signo opuesto a ambos lados (Fig. 3).

Figura 2: Función de onda para n = 1, V0 = 5, b = 1.

Figura 3: Función de onda para n = 2, V0 = 5, b = 1.

Estas funciones de onda en comparación con las funciones de onda de una partícula en
un pozo cuadrado de potencial poseen una diferencia en la simetría y estructura. Para un
pozo cuadrado (V0 = 0 y b = 0) las funciones de onda tienen una forma senoidal, en
este caso al observar la Fig. 2 vemos que en la región central se tiene un pequeño valle,
esta región está asociada al escalón de potencial y este pequeño valle es originado por un
fenómeno de tunelaje [17, 18], esta es una región en la que la probabilidad de encontrar la
partícula en la región del escalón es diferente de cero, mientras que en el pozo cuadrado
las funciones de onda están distribuidas en una región como podemos ver a continuación
en la Fig. 4 y la Fig. 5.
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Figura 4: Función de onda en un pozo cuadrado para n = 1, V0 = 0, b = 0.

Figura 5: Función de onda en un pozo cuadrado para n = 2, V0 = 0, b = 0.

Para n = 1 la función de onda presenta un solo lóbulo sin nodos internos (Fig. 4); para
n = 2 aparece un nodo en el centro y dos lóbulos de signo opuesto (Fig. 5). Cada función
de onda tiene al igual que en el doble pozo cuadrado n − 1 nodos y su forma refleja
el incremento en energía y en el número de oscilaciones con n, es decir a mayor nivel
energético En mayor cantidad de oscilaciones.

La cuantificación del tunelaje se realiza directamente mediante la probabilidad de encon-
trar la partícula en la región del escalón, definida en la Ec. 3.42 como:

p (x, λn) =
∫ x2

x1
|ψn(x, λn)|2 dx, (3.42)

donde
x1 = π

2 − b

2 , x2 = π

2 + b

2 .

Esta probabilidad refleja la penetración de la función de onda dentro de la barrera de
potencial y representa directamente la capacidad que tiene la partícula para atravesar la
barrera.
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El valor de p (x, λn) proporciona una medida cuantitativa del tunelaje, siendo sensible
tanto a la altura V0 como al ancho b de la barrera contenidos en λn. A medida que estas
características del potencial varían, la probabilidad de encontrar la partícula en la barrera
se modifica, reflejando la competencia entre la confinación impuesta por la barrera y la
naturaleza ondulatoria de la partícula.

Dada la construcción de la función de onda del sistema, la entropía de Shannon para el
estado n−ésimo de la función de onda se define como:

Sψn = −
∫ π

0
|ψn(x, λn)|2 log |ψn(x, λn)|2dx, (3.43)

donde el dominio de integración corresponde al intervalo x ∈ [0, π]. Esta expresión cuan-
tifica la dispersión en la distribución espacial de probabilidad del estado cuántico n bajo
las condiciones impuestas por el doble pozo cuadrado infinito. De este modo la Ec. 3.43
captura cómo la forma y extensión ψn(x, λn), influenciada por el ancho b y la altura del
escalón de potencial V0 de la barrera, determinan la información contenida en la localiza-
ción de la partícula 1 .

3.1. Función de Wigner del sistema

Para construír la función de Wigner del problema lo hacemos mediante la siguiente defi-
nición:

W (x, p) = 1
ℏπ

∫ ∞

−∞
ψ∗ (x+ y)ψ (x− y) e

2ipy
ℏ dy, (3.44)

donde hay que redefinir los límites de integración para y en términos de x. Tendremos
el siguiente conjunto de desigualdades que delimitan la integración para la función de
Wigner:

No. Desigualdad

(1) −x ≤ y <
π

2 − b

2 − x

(2)
π

2 − b

2 − x ≤ y <
π

2 + b

2 − x

(3)
π

2 + b

2 − x ≤ y ≤ π − x

(4) x ≥ y > −
(
π

2 − b

2 − x
)

(5) −
(
π

2 − b

2 − x
)

≥ y > x− π

2 − b

2
(6) −

(
x− π

2 − b

2

)
≥ y ≥ x− π

Tabla 1: Desigualdades que delimitan la región de integración

Las desigualdades que aparecen en la Tabla. 1 generan el siguiente conjunto de rectas en
la región en la que se encuentra definido el pozo de potencial y la función de onda.

1Un estudio de la entropía de Shannon de la función de onda para el doble pozo puede encontrarse en la
primera parte de este proyecto.
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π
4

π
2

3π
4

π

−π

−π
2

π
2

π
b = 1

Región 1 Región 2 Región 3x

y y = x
y = −x
y = π

2 − b
2 − x

y = −π
2 + b

2 + x

y = −π
2 − b

2 + x

y = π
2 + b

2 − x
y = π − x
y = x− π

Figura 6: Rectas en el plano (x, y) que delimitan las regiones de integración para la fun-
ción de Wigner asociada a un sistema con doble pozo cuadrado, donde las desigualdades
indican los intervalos en los que la función de onda es distinta de cero.

La Fig. 6 muestra las 8 rectas que surgen de graficar las desigualdades en la Tabla. 1.
Como podemos observar, estas rectas generan sobre el eje x tres regiones donde sabemos
que la función de onda es distinta de cero. Como podemos ver las rectas y = x; y = −x
se intersectan con las rectas y = π

2 − b

2 −x; y = −π

2 + b

2 +x en el punto x = π−b
4 , lo cual

define nuestra primera y segunda región de integración, es decir, entre x = 0 y x = π−b
4 ,

y ∈ [−x, x) ; entre x = π−b
4 y x = π−b

2 , y ∈ [−π

2 + b

2 + x,
π

2 − b

2 − x). Por lo que las
primeras dos integrales son de la siguiente forma (ℏ = 1):

W1(x, p, λn) = 1
π

∫ x

−x
ψ∗

1 (x+ y, λn)ψ1 (x− y, λn) e2ipydy, (3.45)

W2(x, p, λn) = 1
π

∫ π
2 − b

2 −x

− π
2 + b

2 +x
ψ∗

1 (x+ y, λn)ψ1 (x− y, λn) e2ipydy, (3.46)

Haciendo el análisis para las otras dos regiones delimitadas por las rectas en la Fig. 6
obtendremos las siguientes cuatro integrales:

W3(x, p, λn) = 1
π

∫ − π
2 + b

2 +x

π
2 − b

2 −x
ψ∗

2 (x+ y, λn)ψ2 (x− y, λn) e2ipydy, (3.47)

W4(x, p, λn) = 1
π

∫ π
2 + b

2 −x

− π
2 − b

2 +x
ψ∗

2 (x+ y, λn)ψ2 (x− y, λn) e2ipydy, (3.48)

W5(x, p, λn) = 1
π

∫ − π
2 − b

2 +x

π
2 + b

2 −x
ψ∗

3 (x+ y, λn)ψ3 (x− y, λn) e2ipydy, (3.49)
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W6(x, p, λn) = 1
π

∫ π−x

−(π−x)
ψ∗

3 (x+ y, λn)ψ3 (x− y, λn) e2ipydy, (3.50)

Como se observa en estas integrales, la función de Wigner dependerá del número cuántico
n, cada estado ligado en el doble pozo cuadrado tendrá una función de Wigner diferente.

Una vez obtenida la función se Wigner, se procede a construir la entropía de Shannon
asociada a esta función que como ya se mencionó en la Secc. 2.3, está compuesta por tres
términos en la Ec. 2.13

SW = −
∫
W+
i (x, p) logW+

i (x, p)dxdp

−
∫
W−
i (x, p) logW−

i (x, p)dxdp− iπ
∫
W−
i (x, p)dxdp.

(3.51)

Con esta construcción podemos pasar a analizar distintas cantidades como lo son la en-
tropía de Shannon de la función de Wigner, la entropía de Shannon de la función de onda
y la negatividad de la función de Wigner, en términos de los parámetros del sistema.
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4. Dependencia paramétrica de las magnitudes

Comencemos por la entropía de Shannon de la función de onda para el primer estado
n = 1, Fig. 2, y fijemos el valor del alto del potencial en V = 5 y V = 20. Al variar
el ancho de la barrera b desde 0 a π. Cuando b = 0 tenemos un sistema de una partícula
en una caja, de igual forma que cuando b = π, entonces es de esperar que los valores de
entropía de Shannon de la función de onda coincidan en estos casos límite.

Con las Ecs. 3.43, y la Ec. 3.51 procedemos a calular las entropías de Shannon de am-
bas funciones, la función de onda y la función de Wigner. Se observa que a medida que
b aumenta desde cero, se observa inicialmente un crecimiento progresivo de la entropía,
reflejando una mayor deslocalización espacial de la función de onda. Esta deslocaliza-
ción espacial llega a un máximo alrededor de b ≈ 2.04 tal como se muestra en la Fig. 7
coincidiendo con un máximo valor de interferencia en la función de onda generado por el
alto del escalón central en el doble pozo, y posteriormente la función de onda empieza a
localizarse a partir de este punto, ya que cuando la energía del sistema es igual al alto del
escalón E = V la función de onda empieza a localizarse progresivamente hasta alcanzar
el valor inicial de entropía, esto está reflejado en la Fig. 7.

Figura 7: Entropía de Shannon para una partícula en el estado base en un doble pozo
cuadrado de potencial con V = 5, en donde se observa el máximo valor de deslocalización
alrededor de b ≈ 2.04 donde la línea roja punteada indica el valor de b para el cualE = V .

Es de esperarse que en esta clase de sistemas se genere tunelaje [18,26], esta probabilidad
se calcula mediante la Ec. 3.42. En este sistema el tunelaje aumenta conforme la energía
y ancho del escalón de potencial aumenta. Esta probabilidad de tunelaje crece hasta un
máximo que ocurre justo antes de que E = V , ya que en este punto la partícula se encon-
traría por encima de la barrera. En el punto máximo de tunelaje antes de que la energía
sea igual al potencial la probabilidad de tunelaje es de alrededor de p ≈ 0.72, reflejado en
la Fig. 8.
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Figura 8: Tunelaje en función del ancho de la barrera de potencial, se observa que para
el valor de b en el cual se tiene el máximo valor de probabilidad de tunelaje es p ≈ 0.72
donde la línea roja punteada indica el valor de b para el cual E = V .

La parte real de la entropía de la función de Wigner en cambio, difiere de estos com-
portamientos observados en la función de onda, ya que la contribución de la entropía de
Shannon aumenta hasta b ≈ 1.73 y empieza a disminuir hasta un valor menor al inicial
antes de empezar las variaciones de b. Para mostrar esto veamos el cambio en la entropía
en función del ancho del escalón de potencial en la Fig. 9.

Figura 9: Entropía de la función de Wigner en función del ancho del escalón de potencial
para el primer estado en el doble pozo cuadrado, con un valor del escalón de potencial de
V = 5 donde la línea roja punteada indica el valor de b para el cual E = V .

Si bien la entropía de Shannon de la función de Wigner mostrada en la Fig. 9 no presen-
ta un patrón que pueda ser identificable con las demás cantidades, la negatividad de la
función de Wigner comparte máximos con la entropía de Shannon de la función de onda.
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Cuando el ancho de la barrera genera una energía tal que E = V esta función cubre am-
bos pozos al mismo tiempo, y la entropía mide esta distribución; en cambio la función de
Wigner y su negatividad miden la interferencia generada entre estos pozos. En la Fig. 10
podemos observar esto.

Figura 10: Negatividad de la función de Wigner del primer estado en función del ancho
de la barrera de potencial, se observa un máximo compartido con la entropía de la función
de onda alrededor de b ≈ 2.04 para un alto del escalón de V = 5 donde la línea roja
punteada indica el valor de b para el cual E = V .

Esto ocurre ya que la energía del estado base está por debajo de la barrera de potencial,
esto implica que al variar el ancho de la barrera se genera interferencia al confinar la
función de onda en los pozos generados en los extremos. Veamos como se comportan
estas cantidades para V = 20.

Figura 11: Entropía de Shannon de la función de onda del primer estado con variaciones
del ancho del escalón de potencial b, para un valor del alto de potencial V = 5, en el cual
se observa un máximo de entropía alrededor de b ≈ 2.67 donde la línea roja punteada
indica el valor de b para el cual E = V .
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Vemos en la Fig. 11 que el máximo de entropía se recorre, conforme aumenta el valor de
V , ahora el máximo de entropía ocurre en el mismo punto en el que coinciden E y V ,
posteriormente recuperamos el sistema de una partícula en una caja y el valor de entropía
inicial es consistente con el valor final.

Figura 12: Tunelaje de la función de onda en función de b, donde la línea roja punteada
indica el valor de b para el cual E = V , vemos que el valor máximo de tunelaje se da en
b ≈ 2.51 ya que en E = V la partícula ya se encuentra por encima del escalón.

En este caso el máximo valor de tunelaje en la Fig. 12 ocurre alrededor de b ≈ 2.51 lo
cual es de esperarse dado el alto del escalón. De igual forma que para el valor anterior
de V , la parte real de la entropía de Shannon no presenta un comportamiento que pueda
ser identificado con alguna de las otras cantidades de interés del sistema, en la Fig. 13 se
observa esta entropía.
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Figura 13: Entropía de Shannon de la función de Wigner para el estado base en función
del ancho del escalón de potencial b, donde la línea roja punteada indica el valor de b para
el cual E = V , para un valor del alto del escalón V = 20, no se observa ningún patrón
que coincida con las otras cantidades.

En este caso la negatividad de la función de Wigner comparte el máximo valor en el mismo
punto en que la probabilidad de tunelaje es máxima, lo cuál indica que la negatividad está
siendo maximizada en los puntos de máxima probabilidad de tunelaje. Esto lo podemos
observar en la Fig. 14.

Figura 14: Negatividad de la función de Wigner del estado base en función del ancho
del escalón de potencial b, donde la línea roja punteada indica el valor de b para el cual
E = V , para un alto del escalón V = 20, el máximo valor de negatividad ocurre en
b ≈ 2.51.

Al comparar el comportamiento del sistema para V = 5 y V = 20, se observa que, aun-
que las tendencias generales se conservan, la posición de los máximos de las distintas

24 PROYECTO TERMINAL I



4 DEPENDENCIA PARAMÉTRICA DE LAS MAGNITUDES

cantidades se desplaza de forma significativa. Para V = 5, la entropía de Shannon de la
función de onda alcanza su valor máximo en b ≈ 2.04, antes de que se cumpla la condi-
ción E = V , ya que esta se cumple en b ≈ 2.20, Fig. 7 y 8. Esto indica que la máxima
deslocalización espacial de la partícula ocurre aún cuando hay presencia de tunelaje, ya
que este máximo en la entropía coincide con el máximo valor de pobabilidad de tune-
laje p antes de que la partícula haya sobrepasado la barrera. En cambio, para V = 20,
este máximo de entropía se traslada hasta b ≈ 2.67, coincidiendo con el punto en el que
E = V , Fig. 11, sin embargo podemos observar que la probabilidad máxima de tunelaje
se encuentra en b ≈ 2.51 en la Fig. 12. Este desplazamiento sugiere que al aumentar la
altura de la barrera, se requiere un mayor ancho de la barrera para alcanzar el estado de
máxima deslocalización, y que en este caso la transición entre el tunelaje y la partícula li-
bre por encima de la barrera está más estrechamente asociada al incremento de la entropía
espacial.

La entropía real de la función de Wigner en la Fig. 9 y Fig. 13, por su parte, mantiene un
comportamiento distinto en ambos escenarios, sin seguir de forma directa las variaciones
de la entropía de la función de onda ni de la probabilidad de tunelaje. Esto se debe a que
incorpora información de correlaciones posición-momento, capturando la complejidad de
la estructura en el espacio de fases más allá de la mera extensión espacial de la densi-
dad. Así, los máximos y mínimos en esta magnitud no coinciden necesariamente con los
puntos de máxima deslocalización, sino con configuraciones particulares en las que las
coherencias cuánticas se organizan de manera diferente.

En cambio, la negatividad de la función de Wigner en la Fig. 10 y Fig. 14 muestra una
correlación más clara con el fenómeno de tunelaje. Para V = 5, sus máximos coinciden
con los de la entropía de la función de onda, reflejando que la interferencia que produce
la deslocalización también intensifica las regiones negativas en el espacio de fases. Para
V = 20, la negatividad alcanza su valor máximo en b ≈ 2.51, coincidiendo con el punto
de máxima probabilidad de tunelaje. Esto indica que, cuando la transferencia coherente
de probabilidad entre los pozos es más intensa, la no clasicalidad del estado medida por
la negatividad también es máxima.

Para el segundo estado cuántico en el doble pozo, se realizaron las mismas variaciones,
es decir, se fijó un valor del alto de potencial de V = 5, 20 y se realizaron variaciones
del ancho del escalón de potencial. mostrando que de igual forma el comportamiento de
la entropía de Shannon tanto para la función de onda como para la función de Wigner
difieren.

En este caso los máximos y mínimos de entropía de la función de onda y el valor E = V
no coinciden, ya que al ser el segundo estado más energético, este tiende a saltar por
encima de la barrera de potencial para menores valores de b, en este caso esto ocurre
alrededor de b ≈ 1.88, este valor de b tampoco coincide con el máximo valor de entropía
ni con el mínimo de la misma. Esto lo podemos ver reflejado en la Fig. 15.
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Figura 15: Entropía de la función de onda para el segundo estado, n = 2, en función del
ancho del escalón de potencial b, donde la línea roja punteada indica el valor de b para el
cual E = V , con un valor del alto del escalón de V = 5. Se tiene un máximo en b ≈ 2.51.

Por otro lado, la entropía de la función de Wigner para este estado presenta un máximo
en b ≈ 1.88, que como ya se mencionó es el punto en el que E es muy cercano a V . Esto
se puede observar en la Fig. 16, donde vemos un comportamiento creciente de la entropía
desde b = 0 hasta b = 1.88 para posteriormente decrecer.

Figura 16: Entropía de la función de Wigner del segundo estado, n = 2, en función del
ancho del escalón de potencial b donde la línea roja punteada indica el valor de b para el
cual E = V , para un alto del escalón de potencial de V = 5.

En este caso el máximo valor de tunelaje se da en b ≈ 1.73 y no presenta ningún patrón
identificable con alguna otra cantidad, esto lo podemos ver en la Fig. 17.

26 PROYECTO TERMINAL I



4 DEPENDENCIA PARAMÉTRICA DE LAS MAGNITUDES

Figura 17: Tunelaje de la función de onda del segundo estado n = 2 en función del ancho
del escalón b, donde la línea roja punteada indica el valor de b para el cual E = V . Vemos
que el valor máximo de tunelaje se da en b ≈ 1.73 ya que en E = V la partícula ya se
encuentra por encima del escalón.

La negatividad de la función de Wigner de este estado también comparte el máximo con
la entropía de Shannon, es decir, se encuentra localizado en b ≈ 2.51, y es un máximo
que comparte con el primer estado para un valor de V = 20, ver Fig. 18.

Figura 18: Negatividad de la función de Wigner del segundo estado, n = 2, en función
del ancho del escalón de potencial b, donde la línea roja punteada indica el valor de b para
el cual E = V , para un alto del escalón V = 5, el máximo valor de negatividad ocurre en
b ≈ 2.51.

Para este mismo estado pero con un alto del escalón de V = 20, se obtuvieron las gráficas
en la Fig. 19 a la Fig. 22.
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Figura 19: Entropía de la función de onda para el segundo estado, n = 2, en función del
ancho del escalón de potencial b, donde la línea roja punteada indica el valor de b para
el cual E = V , con un valor del alto del escalón de V = 20. Se tiene un máximo en
b ≈ 2.83.

Para este caso podemos ver que el máximo valor de entropía ocurre en b ≈ 2.83, y se
encuentra más allá de E = V , de modo que podemos decir que el máximo valor de
deslocalización espacial ocurre cuando la partícula ha sobrepasado el alto del escalón de
potencial. La entropía de la función de Wigner en función del ancho del escalón, presenta
un comportamiento similar al del estado base, es decir, no tiene un comportamiento que
pueda ser asociado a alguna otra cantidad, esto puede verse en la Fig. 20.

Figura 20: Entropía de la función de Wigner del segundo estado, n2, en función del ancho
del escalón de potencial b, donde la línea roja punteada indica el valor de b para el cual
E = V , con un valor del alto de potencial de V = 20 en el que se observa un máximo en
b ≈ 1.89.

Vemos que el máximo en la entropía ocurre en b ≈ 1.89, y posteriormente decrece, pero
no coincide con el valor máximo de la entropía de Shannon de la función de onda. ni
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coincide tampoco con el valor máximo de tunelaje, ya que como podemos ver en la Fig.
21 la probabilidad de tunelaje se mantiene menor a 0.2 hasta b ≈ 2.20 y alcanza su valor
máximo en b ≈ 2.51.

Figura 21: Tunelaje de la función de onda en función de b, donde la línea roja punteada
indica el valor de b para el cual E = V . Vemos que el valor máximo de tunelaje se da en
b ≈ 2.51 ya que en E = V la partícula ya se encuentra por encima del escalón.

En este caso la negatividad de la función de Wigner, es menor a 0.2 en casi todo el inter-
valo, es en b ≈ 2.04 que empieza a aumentar hasta alcanzar su máximo en b ≈ 2.67, esto
lo podemos ver en la Fig. 22.

Figura 22: Negatividad de la función de Wigner del segundo estado en función del ancho
del escalón de potencial, para un alto del escalón V = 5, el máximo valor de negatividad
ocurre en b ≈ 2.67.

En el caso del segundo estado cuántico, el incremento de energía modifica de forma nota-
ble la relación entre las distintas cantidades analizadas, en comparación con el estado base.
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Para V = 5, el cruce E = V ocurre en b ≈ 1.88, un valor que se encuentra claramente
separado de los máximos de entropía de Shannon de la función de onda y de la negativi-
dad de la función de Wigner en la Fig. 15 y la Fig. 18 respectivamente. Esto implica que,
a diferencia del estado base, la deslocalización espacial máxima de la función de onda no
está directamente asociada ni con la condición de resonancia energética (E ≈ V ) ni con
la máxima interferencia cuántica entre pozos. El hecho de que el segundo estado sea más
energético provoca que la partícula pueda superar la barrera para valores más pequeños
de b, lo que desplaza y desacopla los máximos de estas magnitudes. Además, la entropía
de la función de Wigner muestra un máximo justamente en el punto E = V en la Fig.
16, lo que sugiere que este formalismo es más sensible a la transición entre estados por
debajo y por encima de la barrera que la entropía calculada a partir de la función de onda.
El tunelaje, en cambio, alcanza su máximo en b ≈ 1.73 en la Fig. 17, lo que indica que su
crecimiento y disminución responden a un mecanismo diferente al de la deslocalización o
la interferencia medida por la negatividad. Sin embargo, la negatividad para este caso de
V = 5 coincide en su máximo con el de la entropía de Shannon de la función de onda, lo
cual puede observase en la Fig. 18 y Fig. 15 respectivamente, lo que apunta a que, aunque
los mecanismos físicos que modulan estas cantidades sean distintos, existe una conexión
entre la maximización de la interferencia cuántica y la deslocalización espacial en este
régimen de baja altura de barrera.

Para V = 20, el panorama es aún más contrastante. El máximo de la entropía de Shannon
de la función de onda se desplaza hasta b ≈ 2.83, Fig. 19, un valor claramente superior
al correspondiente a E = V (b ≈ 2.67), lo que confirma que la mayor deslocalización se
produce cuando la partícula ha sobrepasado la barrera y puede distribuirse libremente por
todo el sistema. Por otro lado, la entropía de Shannon de la función de Wigner en la Fig. 20
presenta un máximo en b ≈ 1.89, evidenciando nuevamente su sensibilidad a la transición
E ≈ V . En este caso, el tunelaje en la Fig. 21 permanece bajo (menor a 0.2) hasta b ≈
2.20, alcanzando su máximo en b ≈ 2.51, lo que sugiere que la probabilidad de encontrar
a la partícula dentro de la barrera crece más lentamente en presencia de una barrera alta y
ancha. Finalmente, la negatividad de la función de Wigner en la Fig. 22, que se mantiene
reducida en gran parte del rango, empieza a incrementarse en b ≈ 2.04 y alcanza su
máximo en b ≈ 2.67, sin coincidir con ninguno de los picos de las otras cantidades. Este
comportamiento indica que, para un estado excitado en presencia de una barrera alta, la
interferencia cuántica significativa surge principalmente cuando la partícula se encuentra
bien por encima de la barrera, y no en el umbral de cruce energético.

En conjunto, el análisis del segundo estado muestra que la relación entre deslocalización
(entropía de Shannon de la función de onda), interferencia cuántica (negatividad) y tran-
sición de régimen (E ≈ V ) es mucho menos directa que en el estado base. La energía
más alta provoca que la partícula cruce la barrera antes de que se maximicen las demás
propiedades, y la altura de la barrera modula de manera diferenciada los puntos de máxi-
mo para cada cantidad. Esto sugiere que, mientras en el estado base existe una correlación
más clara entre estos indicadores, en estados excitados el desacoplamiento es la norma, y
la función de Wigner revela de forma más precisa la sensibilidad del sistema a la transi-
ción E ≈ V , mientras que la función de onda captura mejor la deslocalización global del
estado.
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Cuando se comparan los resultados para los tres primeros estados, se observa un cambio
progresivo en la relación entre las cantidades estudiadas. En el estado base (n = 1), los
máximos de entropía, probabilidad de tunelaje y negatividad de la función de Wigner se
alinean de forma clara alrededor del punto E ≈ V . Esto sugiere que, en este régimen, la
deslocalización cuántica, la interferencia y el cruce energético están fuertemente acopla-
dos, describiendo la transición de un estado localizado a uno deslocalizado.

En el segundo estado (n = 2), esta coincidencia comienza a romperse. Si bien la entropía
de Shannon de la función de onda sigue mostrando un máximo cerca del cruce E ≈ V ,
los picos de la negatividad y la probabilidad de tunelaje se desplazan a valores distintos
de b. Esto indica que, para estados excitados, la interferencia cuántica no necesariamente
se maximiza en el umbral de cruce energético, sino que responde a una estructura nodal
más compleja de la función de onda, la cual interactúa de manera diferente con la barrera
de potencial.

De nuestro estudio de estados superiores se obtuvo que en el tercer estado (n = 3), el
patrón se degrada aún más. Aquí, las entropías y la negatividad presentan irregularidades
numéricas y carecen de suavidad como funciones de los parámetros, llegando incluso a
asignar valores diferentes para un mismo valor de b. Esto no solo refleja limitaciones
numéricas, sino también una creciente sensibilidad del sistema: al aumentar n, la función
de onda presenta más nodos y regiones de interferencia, lo que amplifica la dependencia
de las cantidades cuánticas frente a pequeñas variaciones de parámetros y a la resolución
numérica empleada. Estas cantidades se pueden visualizar en el Apéndice B.

En conjunto, estos resultados muestran que la relación clara entre las magnitudes estu-
diadas, presente en el estado base, se diluye conforme aumenta el número cuántico. En
estados excitados, la física del doble pozo se vuelve más rica pero también más difícil
de caracterizar con un único indicador, y la interpretación de la función de Wigner y sus
medidas derivadas requiere considerar la estructura de la función de onda y la sensibilidad
numérica inherente a estos sistemas.
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5. Conclusiones

El presente trabajo tuvo como objetivo estudiar la relación entre la distribución espacial
de los estados cuánticos en un potencial de doble pozo y medidas asociadas a su com-
portamiento cuántico. Para ello, se resolvió la ecuación de Schrödinger independiente del
tiempo para obtener las funciones de onda correspondientes a los primeros estados del
sistema, a partir de las cuales se calcularon: la función de onda, la función de Wigner, la
entropía de Shannon de la función de onda, la entropía de Shannon de la función de Wig-
ner, la probabilidad de tunelaje y la negatividad de la función de Wigner. Estas medidas
permiten, respectivamente, evaluar el grado de localización o deslocalización espacial, la
capacidad de la partícula de atravesar la barrera de potencial, y la presencia de interferen-
cia cuántica.

El análisis se enfocó en determinar cómo varían estas magnitudes en función de los pará-
metros del sistema, particularmente la altura V y el ancho b de la barrera, y en identificar
posibles correlaciones entre ellas. En el primer estado del doble pozo de potencial, el aná-
lisis mostró que el máximo de entropía de Shannon de la función de onda se desplaza
con el aumento de V hasta coincidir con el punto donde E ≈ V . En ese mismo régimen,
la probabilidad de tunelaje y la negatividad de la función de Wigner presentan máximos
coincidentes, lo que indica una clara correlación entre la capacidad de la partícula pa-
ra atravesar la barrera y la presencia de interferencia cuántica no clásica (negatividad de
Wigner). Sin embargo, la entropía de Shannon de la función de Wigner no mostró patrones
claros que pudieran asociarse a las otras magnitudes.

En el segundo estado, los resultados mantienen la correlación entre máximos de negati-
vidad y tunelaje, pero la posición de dichos máximos cambia respecto al primer estado,
en parte porque la función de onda ya no está tan confinada y presenta un carácter más
extendido. Esto implica que la relación entre el punto de máxima interferencia cuántica y
las condiciones geométricas del potencial depende fuertemente del número cuántico.

En el tercer estado, las irregularidades numéricas en las entropías y la negatividad, así
como su falta de comportamiento suave frente a los parámetros, sugieren que la naturale-
za del estado es más compleja. La energía elevada favorece un estado más extendido, lo
que reduce la localización espacial y hace que pequeñas variaciones numéricas o de pará-
metros tengan un efecto notable en las cantidades calculadas. Estas fluctuaciones pueden
deberse tanto a la naturaleza del estado como a limitaciones en la resolución numérica o
el método de integración.

Es importante remarcar que el objetivo de este estudio era poder hacer el análisis de un
sistema de dos partículas indistinguibles en este sistema, ya fueran bosónicas o fermióni-
cas, pero dada la complejidad de este problema, no fue posible alcanzar este objetivo que
resultó ser desafiante.

En conjunto, el estudio muestra que existe una correlación robusta entre la probabilidad
de tunelaje y la negatividad de la función de Wigner para los estados analizados, especial-
mente en los regímenes donde la energía E se aproxima o supera a la altura del potencial
V . Asimismo, la entropía de Shannon de la función de onda logra capturar transiciones
geométricas claras en el sistema, mientras que la entropía asociada a la función de Wigner
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no presenta patrones universales. Por otro lado, se observa que a mayor número cuántico
los estados tienden a comportarse de manera más extendida, mostrando menor sensibili-
dad a la barrera en términos de localización, pero exhibiendo una mayor complejidad en
los patrones de interferencia cuántica, lo que puede dar lugar a resultados numéricamente
irregulares.

Cabe señalar que, inicialmente, se contempló extender el análisis hacia un sistema de dos
partículas indistinguibles ya fueran bosónicas o fermiónicas confinadas en el doble pozo
de potencial. Sin embargo, la complejidad matemática y computacional que implica este
problema excedió el alcance del presente trabajo, convirtiéndose en un reto que deberá
abordarse en investigaciones posteriores.
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A. Constantes de normalización
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B. Gráficas

Figura 23: Entropía para una partícula del tercer estado, n = 3, en función del ancho
de barrera b, y un alto del escalón de potencial de V = 5, si bien es una función bien
comportada, no es posible establecer una correspondencia entre la entropía como una
medida de deslocalización al variar el ancho del escalón y analizar al mismo tiempo el
tunelaje ya que la partícula sube la barrera para valores muy pequeños de b.

Figura 24: Entropía de la función de Wigner del tercer estado en función del tunelaje, en
este caso se observa que existe una región en la que no es posible establecer un compor-
tamiento claro, ya que la probabilidad de tunelaje no tiene sentido a partir de E = V , ya
que la partícula experimenta interacción con el alto del escalón.
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Figura 25: Entropía de Shannon de la función de onda en función del tunelaje, para el
tecer estado n = 3 y V = 5, se hace énfasis en el hecho de que el tunelaje, no tiene
sentido cuando E = V ya que como se mencionó la partícula en ese punto deja de estar
por debajo de la barrera.
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