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RESUMEN

Resumen

Los excitones-polaritones son estados de cuasipartículas que resultan del acoplamiento
fuerte entre luz y materia, dando lugar a estados cuánticos híbridos que heredan las ca-
racterísticas de ambas partes, como la ligera masa efectiva de su parte fotónica y las in-
teracciones coulombianas repulsivas de su parte excitónica. Tales características pueden
ser aprovechadas para la creación de estados macroscópicos como condensados, super-
fluidos o los llamados fluidos cuánticos de luz. De modo que un mejor entendimiento
de los excitones-polaritones es deseable para el desarrollo de los ya mencionados es-
tados macroscópicos y nuevas tecnologías. Debido a la configuración del sistema, los
excitones-polaritones son un sistema que puede interactuar con sus alrededores por me-
dio de términos disipativos, en este trabajo se estudia cómo la disipación, principalmente
en el acoplamiento, modifica las propiedades del sistema. Además, para una mejor com-
prensión fenomenológica del sistema, estudiaremos el caso de dos osciladores clásicos
acoplados, con diferentes fuentes de disipación.

Palabras clave: Acoplamiento coherente, acoplamiento disipativo, masa efectiva negati-
va, atracción de niveles, repulsión de niveles, puntos excepcionales.
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1 INTRODUCCIÓN

1. Introducción

Normalmente, el paradigma de un buen experimento en física, es aquel en el que se pue-
da aislar al sistema de interés lo mayor posible de todas las fuentes de ruido que puedan
alterarlo, y por lo tanto, supondrían un obstáculo en el descubrimiento de las propiedades
intrínsecas del sistema en cuestión. Este proceder ha llevado a la idealización de sistemas
completamente aislados, es decir, siempre apuntar a eliminar todo rastro de variables ex-
ternas que modifiquen nuestro sistema y supongan una dificultad a la hora de descubrir
la verdadera naturaleza del mismo. Sin embargo, esta imagen contrasta con el estudio de
sistemas cuánticos, donde las interacciones con su entorno forman parte fundamental de
las propiedades que exhiben [1, 2].

La posibilidad de que existan interacciones efectivas entre fotones lo suficientemente fre-
cuentes para generar efectos colectivos, es una idea que atrajo la atención de los físicos
durante los últimos años. Para lograr esto, una de las configuraciones que más ha sido
estudiada es aquella donde luz y materia están acoplados fuertemente, lo que quiere decir
que la energía de interacción es mayor que la pérdida de energía en el sistema [3, 4]. Este
acoplamiento da lugar a una cuasipartícula llamada polaritón [5, 6]. Esto se obtiene a tra-
vés de microcavidades ópticas, las cuales son resonadores ópticos que se encuentran en el
orden de la longitud de onda de la luz, dentro se encuentra una capa delgada de un semi-
conductor [5]. Al confinar a la luz dentro de la cavidad por se aumentan las posibilidades
de lograr el acoplamiento luz-materia. Un esquema de una microcavidad se presenta en la
Figura 1(a).

En este trabajo, se estudiará un sistema de excitones-polaritones con términos disipati-
vos, tanto en el sistema no interactuante como en el acoplamiento. Como mencionamos,
el estudio de un sistema cuántico que interactúa con sus alrededores ya posee un interés
en sí mismo. Además, el acoplamiento disipativo supone aplicaciones interesantes como
controlar la dirección de propagación mediante ingeniería en la disipación [7] o conectar
osciladores separados mediante interacciones disipativas no locales [8]. Esto se ha carac-
terizado en sistemas cuánticos como magnones [8] y más recientemente en polaritones [9].

1.1. Excitones-polaritones

Los semiconductores son materiales que pueden ser caracterizados mediante el modelo
de bandas. En este modelo existen dos bandas de energía permitidas, la de valencia y la
de conducción. Dichas bandas están separadas por una zona no permitida determinada
por una brecha o gap de energía. Con este modelo, los semiconductores son aquellos
materiales cuya banda de valencia está casi llena y la de conducción vacía [6]. Se les
llama semiconductores debido a que bajo ciertas condiciones pueden comportarse como
aislantes o conductores, por ejemplo: la temperatura a la que se encuentren, el campo
eléctrico o magnético al que estén sometidos [10].

Para que un electrón en la banda de valencia pase a la de conducción, se le debe dar una
energía igual o mayor a la brecha, como se ilustra en la Figura 1(b), lo cual puede lograrse
mediante un haz de luz que excite a los electrones. Cuando esto pasa, el electrón excitado
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1.1 Excitones-polaritones 1 INTRODUCCIÓN

(a) (b)

(c)

Figura 1: (a) Esquema de una microcavidad tomado de la Ref. [5]. Esquemas del modelo
de bandas que describe la creación de los excitones y la interacción luz-materia en los
excitones-polaritones, (b) y (c), respectivamente.

deja tras de sí un hueco con carga neta positiva formando un par ligado electrón-hueco,
dando lugar a lo que se conoce como excitón [11, 12].

La interacción entre el electrón en la banda de conducción y el hueco en la de valencia, es
de tipo coulombiana, por lo tanto el excitón puede verse como una partícula tipo átomo
de hidrógeno. Con esto en cuenta, podemos escribir el Hamiltoniano del excitón como:

Ĥeh = p2
e

2me

+ p2
h

2mh

− e2

4πϵ

1
|re − rh|

Donde pe y ph son los momentos del electrón y el hueco, respectivamente. Por tratarse
de un sistema análogo al átomo de hidrógeno, lo resolvemos de manera usual, definimos
la coordenada del centro de masa R y la coordenada relativa r. Con esto construimos un
Hamiltoniano que es separable ante estas dos coordenadas:

Ĥeh = Ĥ1(P, R) + Ĥ2(p, r) = P2

2M
+ p2

2µ
− e2

4π|r|

Con M = me + mh y µ la masa reducida. Dada esta forma del hamiltoniano, los niveles
de energía son:

En = Eg + P2

2M
− Rx

n2

Donde Rx = e2/(2ϵa0,x), a0,x es el radio de Bohr y ϵ es la permitividad eléctrica del
material, por lo que es un modelo mesoscópico. En efecto, los niveles de energía son
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2 POLARITONES EN ACOPLAMIENTO COHERENTE

iguales a los del átomo de hidrógeno, sin embargo, al tomar un excitón en el estado base
y considerando que el momento del centro de masa es cero, la energía puede aproximarse
a:

εx
k = εx

0 + εe
k + εh

k = ε0 + k2

2mx

(1.1)

donde mx es la masa del excitón. También se ha usado ℏ = 1.

Cuando el electrón de la banda de valencia pasa a la de conducción, por lo general, en
el contexto de los semiconductores, el electrón caerá de nueva cuenta al estado de mí-
nima energía, absorbiendo un fotón. Dentro de una cavidad como la de la figura 1(a), el
acoplamiento fuerte entre luz y materia da lugar al excitón-polaritón [6], un pequeño es-
quema descriptivo se muestra en la Figura 1(c). Dentro de la cavidad, la energía del fotón
confinado está dada por [13]:

εc
k = ℏc

nc

√
k2

∥ + k2
⊥ (1.2)

Donde ℏ es la constante de Planck, c es la velocidad de la luz, k⊥ = 2πnc/λc es el número
de onda en la dirección de confinamiento, nc es el índice de refracción del medio dentro de
la cavidad, λc la longitud de onda del modo confinado y k∥ = nc2π/λc tan sin−1 (sin θ/nc) ≈
2πθ/λc es el número de onda en la dirección paralela a los espejos con θ el ángulo de in-
cidencia, tal como se ve en la Figura 1(a). Si asumimos k∥ ≪ k⊥ podemos hacer un
desarrollo en serie:

εc
k ≈ εc

0 +
ℏ2k2

∥

2mc

(1.3)

donde εc
0 = εc(k∥ = 0) = ℏck⊥/nc es la energía a momento cero, además el fotón

adquiere una masa efectiva por estar confinado, ésta es mc = n2
cε

c(k∥ = 0)/c2. Por lo
tanto, si trabajamos en unidades naturales, y además hacemos k∥ = k, tendremos que la
energía de un fotón confinado en la microcavidad, en términos de la masa efectiva que
adquiere, es:

εc
k = εc

0 + k2

2mc

(1.4)

2. Polaritones en acoplamiento coherente

Habiendo presentado qué es un polaritón, podemos escribir el hamiltoniano que describe
el acoplamiento coherente entre luz y materia dentro de la cavidad como:

Ĥ =
∑

k

[
x̂†

k ĉ†
k

] [εx
k Ω

Ω εc
k

] [
x̂k
ĉk

]
(2.1)
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2 POLARITONES EN ACOPLAMIENTO COHERENTE

El cual podemos desarrollar para identificar cada término:

Ĥ =
∑

k
[εx

kx̂†
kx̂k + εc

kĉ†
kĉk + Ω(x̂†

kĉk + ĉ†
kx̂k)] (2.2)

Donde εx
k y εc

k representan la energía de un excitón y un fotón con momento k, respectiva-
mente, de acuerdo a las ecuaciones 1.1 y 1.4. Además, x̂†

k, x̂k, ĉ†
k y ĉk son los operadores de

creación y aniquilación de la parte excitónica y fotónica, en ese orden. Con estos operado-
res obtenemos el operador número para la parte excitónica x̂†

kx̂k = n̂k el cual representa el
número de excitones en el estado νk con momento k, de igual forma para la parte fotónica
tenemos que ĉ†

kĉk es el número de fotones con momento k; por lo tanto, el número total
de excitones y fotones de nuestro sistema es

∑
k x̂†

kx̂k y
∑

k ĉ†
kĉk, respectivamente.

Con estas definiciones y de acuerdo a la segunda cuantización [14, 15], los primeros dos
términos de la ecuación 2.2 corresponden a la energía de la parte excitónica y fotónica.
Por otro lado, Ω nos da la frecuencia de acoplamiento entre el fotón y el excitón, que en
este caso es real. El término cruzado x̂†

kĉk nos dice que se añade un excitón pero se extrae
un fotón, mientras que el término ĉ†

kx̂k quita un excitón y añade un fotón. En resumen, el
tercer término de 2.2 representa el acoplamiento entre luz y materia [12].

El hamiltoniano de la ecuación 2.1 puede ser diagonalizado mediante la siguiente trans-
formación:

[
x̂k
ĉk

]
=
[

Ck Sk
−Sk Ck

] [
L̂k

Ûk

]
(2.3)

La cual nos define los operadores que crean a los polaritones inferiores (lower polariton)
y los superiores (upper polariton), L̂†

k y Û †
k respectivamente. Donde Ck y Sk, se conocen

como los coeficientes de Hopfield [11], los cuales nos dan la fracción de luz y materia que
existe en nuestro sistema. Los coeficientes están normalizados debido a que si queremos
la fracción de luz y materia, y además no hay ninguna disipación, la suma de ambos debe
dar uno.

C2
k = 1

2

1 + δk√
δ2

k + 4Ω2

 y S2
k = 1 − C2

k (2.4)

Por lo que nos gustaría escribir nuestro hamiltoniano en términos de los operadores L̂†
k y

Û †
k y las eigenenergías de cada operador. Partimos de la transformación 2.3 para encontrar

las siguientes igualdades entre operadores:

x̂k = CkL̂k + SkÛk

x̂†
k = CkL̂†

k + SkÛ †
k

ĉk = −SkL̂k + CkÛk

ĉ†
k = −SkL̂†

k + CkÛ †
k
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2 POLARITONES EN ACOPLAMIENTO COHERENTE

Sustituimos esto en el Hamiltoniano de 2.2 para cada término, obteniendo lo siguiente:

εx
kx̂†

kx̂k = εx
k

(
CkL̂†

k + SkÛ †
k

) (
CkL̂k + SkÛk

)
= εx

k

(
C2

kL̂†
kL̂k + SkCk

(
L̂†

kÛk + Û †
kL̂k

)
+ S2

kÛ †
kÛk

) (2.5)

εc
kĉ†

kĉk = εc
k

(
−SkL̂†

k + CkÛ †
k

) (
−SkL̂k + CkÛk

)
= εc

k

(
S2

kL̂†
kL̂k + C2

kÛ †
kÛk − SkCk

(
L̂†

kÛk + Û †
kL̂k

)) (2.6)

Ahora seguimos con los términos cruzados del hamiltoniano:

x̂†
kĉk =

(
CkL̂†

k + SkÛ †
k

) (
−SkL̂k + CkÛk

)
= C2

kL̂†
kÛk − S2

kÛ †
kL̂k + CkSk

(
Û †

kÛk − L̂†
kL̂k

) (2.7)

ĉ†
kx̂k =

(
−SkL̂†

k + CkÛ †
k

) (
CkL̂k + SkÛk

)
= C2

kÛ †
kL̂k − S2

kL̂†
kÛk + SkCk

(
Û †

kÛk − L̂†
kL̂k

) (2.8)

Como ya tenemos todos los términos que aparecen en nuestro Hamiltoniano puestos como
función de los nuevos operadores, reescribimos la expresión recordando la definición de
Sk en términos de Ck y agrupando términos semejantes obtenemos lo siguiente:

εx
kx̂†

kx̂k + εc
kĉ†

kĉk + Ω(x̂†
kĉk + ĉ†

kx̂k) =

L̂†
kL̂k

(
εx

kC2
k + εc

k(1 − C2
k) − 2ΩCk

√
1 − C2

k

)
+ Û †

kÛk

(
εx

k(1 − C2
k) + εc

kC2
k + 2ΩCk

√
1 − C2

k

)
+(L̂†

kÛk + Û †
kL̂k)

(
(εx

k − εc
k)Ck

√
1 − C2

k + Ω(2C2
k − 1)

)

εx
kx̂†

kx̂k + εc
kĉ†

kĉk + Ω(x̂†
kĉk + ĉ†

kx̂k) =

L̂†
kL̂k

(
εx

kC2
k − εc

kC2
k + εc

k − 2ΩCk

√
1 − C2

k

)
+ Û †

kÛk

(
εc

kC2
k − εx

kC2
k + εx

k + 2ΩCk

√
1 − C2

k

)
+(L̂†

kÛk + Û †
kL̂k)

(
Ck

√
1 − C2

k(εx
k − εc

k) + Ω(2C2
k − 1)

)
=

L̂†
kL̂k

(
−δkC2

k + εc
k − 2ΩCk

√
1 − C2

k

)
+ Û †

kÛk

(
δkC2

k + εx
k + 2ΩCk

√
1 − C2

k

)
+(L̂†

kÛk + Û †
kL̂k)

(
Ck

√
1 − C2

kδk + Ω(2C2
k − 1)

)

Dada la última expresión, sustituimos explícitamente a los coefiecientes de Hopfield. Des-
pués de simplificar un poco llegamos a la expresión deseada:
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2 POLARITONES EN ACOPLAMIENTO COHERENTE

εx
kx̂†

kx̂k + εc
kĉ†

kĉk + Ω(x̂†
kĉk + ĉ†

kx̂k) =

L̂†
kL̂k

1
2

(
εc

k + εx
k −

√
δ2

k + 4Ω2
)

+ Û †
kÛk

1
2

(
εc

k + εx
k +

√
δ2

k + 4Ω2
)

Dentro de los paréntesis encontramos a los eigenvalores que diagonalizan al Hamiltoniano
con los correspondientes operadores para los polaritones superiores Ûk e inferiores L̂k:

εUP,LP = 1
2

(
δk + 2εx

k ±
√

δ2
k + 4Ω2

)
(2.9)

Donde δk = εc
k − εx

k es la desintonización, para k = 0 tenemos que: δ = εc
0 − εx

0 donde se
toma, por conveniencia εx

0 = 0. De tal forma que podemos reescribir el Hamiltoniano en
forma diagonal:

Ĥ =
∑

k

[
L̂†

k Û †
k

] [εLP
k 0
0 εUP

k

] [
L̂k

Ûk

]
=
∑

k
L̂†

kL̂kεLP
k + Û †

kÛkεUP
k (2.10)

El espectro de energía de los polaritones se muestra en la Figura 2, donde la gráfica co-
mo función de la desintonización 2(a) nos proporciona información acerca de qué parte
de la energía domina, si la material o la fotónica; por ejemplo, para los polaritones in-
feriores conforme δ crece vemos que la energía se aproxima asintóticamente a la de la
parte material, y cuando δ es negativo la energía tiende a aproximarse a la parte fotóni-
ca. Lo importante es notar que en ésta gráfica la energía de los polaritones siempre se
aproxima asintóticamente a la de la parte fotónica y excitónica, nunca cruza estas cotas,
exhibiendo una clara repulsión de niveles entre ambos modos, propio del acoplamiento
coherente [3, 4, 16]. Del mismo modo, en la Figura 2(b) vemos que la dispersión de los
polaritones con respecto al momento también se aproxima de manera asintótica a las ener-
gías de los excitones y fotones por sí solos, además, el aspecto de la relación de dispersión
es casi parabólico, de modo que para el caso coherente no encontramos una dispersión que
sea evidentemente anómala [17].

De manera similar, en la gráfica de la energía con respecto al momento, vemos una re-
pulsión de niveles, es importante notar que en esta gráfica estamos haciendo a la desinto-
nización cero, es decir, cuando la diferencia de la energía a momento cero entre la parte
fotónica y excitónica es cero. Por lo tanto, lo que se ve en este caso es en el momento de
máxima interacción luz-materia.

En la figura 3 podemos ver cómo se comportan los coeficientes de Hopfield vemos que
cuando δ > 0 la parte fotónica domina frente a la material y cuando δ < 0 todo lo
contrario. Esto en concordancia a lo que observamos en la gráfica de la energía en función
de la desintonización, ya que dependiendo del intervalo donde se encuentre el valor de δ
la energía se aproxima más a la parte material o fotónica, según sea el caso. Más adelante
esto cobrará relevancia en las masas efectivas y en el caso disipativo.

8 PROYECTO TERMINAL I



2 POLARITONES EN ACOPLAMIENTO COHERENTE

(a) Energía como función de la desintonización.

(b) Energía como función del momento.

Figura 2: Espectro de energía de los exitones-polaritones. En rojo los polaritones superio-
res y en azul los polaritones inferiores, además, se muestra en naranja la energía de los
excitones y fotones por separado. Donde se ha tomado la masa efectiva del fotón como
mc = 10−4mx.

9 PROYECTO TERMINAL I



2.1 Masa efectiva 2 POLARITONES EN ACOPLAMIENTO COHERENTE

Figura 3: Coeficientes de Hopfield en función de la desintonización.

2.1. Masa efectiva

En el caso puramente clásico, la primera definición de masa la encontramos en la segunda
ley de Newton F = ma, de modo que la idea de una masa dependiente de las interacciones
con sus alrededores no parece tan evidente. En física del estado sólido la idea de masa
efectiva fue introducida para estudiar el movimiento de electrones dentro de potenciales
periódicos en redes cristalinas [10]. En consecuencia, el concepto de masa efectiva nos
proporciona una manera de entender el comportamiento de cuasipartículas que interactúan
con sus alrededores de manera significativa. Recordemos que la relación de dispersión es
la energía del sistema en función del momento. La masa efectiva estará relacionada con la
curvatura de la relación de dispersión, por lo tanto, en aquellos sistemas donde aparezca
una relación de dispersión anómala (no parabólica) la masa efectiva dependerá de los
parámetros relevantes del sistema [18].

Como dijimos, la masa efectiva está relacionada con la relación de dispersión de nuestro
sistema [18, 19, 9]. De manera general, podemos hacer un desarrollo en serie de Taylor
de la siguiente forma:

Ek ≈ E0 + k0(k − k0)
m1(k0)

+ (k − k0)2

2m2(k0)
+ ... (2.11)

De donde obtenemos los siguientes resultados para los parámetros de m1 y m2:

m1 = k

(
∂E

∂k

)−1

y m2 ≡ m∗ =
(

∂2E

∂k2

)−1

(2.12)

Donde m1 es la masa inercial del paquete de ondas con velocidad de grupo vg = ∂kE(k),
entonces podemos pensar a m1 como la masa asociada al movimiento clásico del siste-
ma. Por otro lado, m2 describe la aceleración del paquete de ondas en presencia de una
fuerza externa, también se le asocia con el esparcimiento del paquete y por eso también
se le llama la masa de difusión [18, 9]. Puestos de manera explícita, es evidente que los
parámetros de masa estarán relacionados con la curvatura de la relación de dispersión; en
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2.1 Masa efectiva 2 POLARITONES EN ACOPLAMIENTO COHERENTE

Figura 4: Masa efectiva difusa para los polaritones superiores e inferiores como función
de la desintonización.

particular, para una relación de dispersión parabólica la primer derivada se hace cero y
por lo tanto m1 = 0.

En nuestro caso, nos interesa saber el comportamiento de la masa efectiva para los pola-
ritones superiores e inferiores, para obtener la masa efectiva debemos evaluar a momento
cero, de este modo el único parámetro relevante será m∗ y estará en términos de la desin-
tonización. Esto debido a que queremos observar el comportamiento de la masa depen-
diendo de si la parte dominante es fotónica o material, también qué es lo que pasa en el
punto de máxima hibridación.

Usando la expresión 2.9 y la definición de δk calculamos la primera y segunda derivada:

∂ε

∂k
= 1

2

{(
k

mc

+ k

mx

)
±
[(

δ2
k + 4Ω2

)−1/2
δk

(
k

mc

− k

mx

)]}

Con esto, podemos calcular la segunda derivada:

∂2ε

∂k2 = 1
2

( 1
mc

+ 1
mx

)
∓ 1

2
(
δ2

k + 4Ω2
)−3/2

δ2
k

(
k

mc

− k

mx

)2

±

1
2
(
δ2

k + 4Ω2
)−1/2

(
k

mc

− k

mx

)2

± 1
2
(
δ2

k + 4Ω2
)−1/2

δk

( 1
mc

− 1
mx

)

Ya que lo que nos interesa ver es cómo se comporta la masa efectiva de los polaritones en
función de qué parte está dominando, la material o fotónica, debemos hacer k −→ 0 para
que la masa quede en función de la desintonización de la siguiente forma:

∂2ε

∂k2

∣∣∣∣∣
k=0

= 1
2

{( 1
mc

+ 1
mx

)
± δ (1/mc − 1/mx)√

δ2 + 4Ω2

}
=

1
mc

[
1
2

(
1 ± δ√

δ2 + 4Ω2

)]
+ 1

mx

[
1
2

(
1 ∓ δ√

δ2 + 4Ω2

)]
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2.1 Masa efectiva 2 POLARITONES EN ACOPLAMIENTO COHERENTE

Figura 5: Gráfica de la primera y segunda derivada de la relación de dispersión. Equiva-
lentes a las expresiones para m1 y m2.

De ésta expresión identificamos a los coeficientes de Hopfield, por lo que la masa de los
polaritones abajo y arriba quede expresada como:

1
m∗

UP

= C2

mc

+ S2

mx

(2.13)

1
m∗

LP

= S2

mc

+ C2

mx

(2.14)

La gráfica de la masa efectiva de los polaritones se muestra en la Figura 4. Vemos que
en el punto de máxima hibridación (δ = 0) las masas de los polaritones arriba y aba-
jo coinciden, esto es evidente desde el hecho de que en este punto los coeficientes de
Hopfield valen lo mismo (dado que la fracción de luz es igual a la material), por lo
tanto, el valor de las masas en este punto es simplemente el valor de la masa reducida:
m∗ = 2mxmc/(mx +mc). El comportamiento de ambas masas se corresponde con los va-
lores de los coeficientes de Hopfield en cada intervalo, recordando que estamos tomando
el valor inverso.

También podemos estudiar el caso de los parámetros de masa para la energía de los polari-
tones en función del momento, usando las derivadas que ya calculamos y la definición de
los parámetros graficamos las masas para la rama de los polaritones inferiores, dado que
ésta es la que tiene una curvatura anómala mucho más notoria que la de los polaritones
superiores.
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3 DISIPACIÓN EN EXCITONES-POLARITONES

Figura 6: Esquema de la disipación en el sistema excitón-polaritón. Aquí se muestra la
exposición a un baño propio para cada parte del sistema, caracterizado por los parámetros
γx y γc, para la parte excitónica y fotónica, respectivamente. Además, el baño conjunto lo
determina el parámetro Ωim

.

En la Figura 5 vemos que la primer derivada, asociada a m1 es siempre positiva, de modo
que para el caso coherente no hay valores negativos para la primer derivada, y por lo tanto
para el parámetro de masa m1 [9]. Sin embargo para la segunda derivada, asociada a m2,
aparecen valores negativos a partir del cambio de curvatura en la relación de dispersión,
donde la segunda derivada diverge en los puntos de inflexión.

3. Disipación en excitones-polaritones

En la sección anterior, vimos cómo se comporta el sistema con un acoplamiento coheren-
te; esa característica es propia de un sistema acoplado ideal, dado que no existen pérdidas
de energía éste será un sistema conservativo. A continuación, exploraremos el caso de un
sistema excitón-polaritón sujeto a disipaciones tanto en las partes excitónica y fotónica así
como en el acoplamiento mismo. Esto quiere decir que cada parte del sistema, excitones
y fotones, está inmerso en un baño propio, dando como resultado una pérdida de energía
para cada parte del sistema, como consecuencia de las imperfecciones de la cavidad, por
ejemplo, la disipación de la parte fotónica es debido a las imperfecciones de los espe-
jos [9]. Además, existe un baño conjunto para ambos sistemas debido al acoplamiento
entre éstos, lo cual genera una pérdida extra [4, 9]. Lo cual puede ilustrarse en el esquema
de la figura 6. Lo que nos interesa es cómo se modifica el sistema dependiendo de qué
disipaciones estén presentes, por lo tanto, trabajaremos tres casos:

1. Sólo la disipación en el acoplamiento está presente.

2. Sólo hay disipación en el sistema no interactuante, el acoplamiento es coherente.

3. La disipación está presente en ambas partes del sistema, es decir, el caso 1 y 2 al
mismo tiempo.
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3.1 Caso 1 3 DISIPACIÓN EN EXCITONES-POLARITONES

3.1. Caso 1

Para incluir el acoplamiento disipativo, modificamos el hamiltoniano de la siguiente for-
ma:

Ĥ =
∑

k

[
x̂†

k ĉ†
k

] [ εx
k ΩR − iΩim

ΩR − iΩim εc
k

] [
x̂k
ĉk

]
(3.1)

Donde el término imaginario fuera de la diagonal corresponde a la disipación solamente
en el acoplamiento del sistema excitón-polaritón [20, 9]. Dicho esto, nos interesa ver cómo
la inclusión de este término disipativo afecta a las variables de interés en el sistema.

Del mismo modo que en el caso coherente, proponemos una transformación del mismo
tipo, con la diferencia de que los coeficientes de Hopfield para este caso se verán modifi-
cados (tan solo por el hecho de que Ω es complejo, pero una constante a fin de cuentas):

C̃2
k = 1

2

1 + δk√
δ2

k + 4(ΩR − iΩim)2

 y S̃2
k = 1 − C̃2

k (3.2)

Al igual que en el caso coherente, podemos diagonalizar el Hamiltoniano mediante la
transformación y los coeficientes. Obteniendo así los eigenvalores de la energía. Con la
diferencia de que ahora tendremos valores complejos debido al término disipativo. Con
esto, las energías quedan de la siguiente forma:

εUP,LP
k − iγUP,LP

k = 1
2

(
δk + 2εx

k ±
√

δ2
k + 4(ΩR − iΩim)2

)
(3.3)

Donde γk representa la parte imaginaria de los valores de la energía.

Para encontrar explícitamente la parte imaginaria y real [21], recordemos que para un
número complejo z = a + ib:

√
a + ib =

√ |z| + a

2 + i
b

|b|

√
|z| − a

2

 (3.4)

Hacemos el cálculo explícito para nuestro caso, de manera general:

√
δ2

k + 4(ΩR − iΩim)2 =
√

(δ2
k + 4(Ω2

R − Ω2
im)) − i(8ΩRΩim) (3.5)

Por lo tanto:
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3.1 Caso 1 3 DISIPACIÓN EN EXCITONES-POLARITONES

Re
(√

δ2
k + 4(ΩR − iΩim)2

)
=

√√√√√(δ2
k + 4(Ω2

R − Ω2
im))2 + (8ΩRΩim)2 + δ2

k + 4(Ω2
R − Ω2

im)
2

Im
(√

δ2
k + 4(ΩR − iΩim)2

)
= −

√√√√√(δ2
k + 4(Ω2

R − Ω2
im))2 + (8ΩRΩim)2 − (δ2

k + 4(Ω2
R − Ω2

im))
2

Entonces ya podemos escribir la parte real e imaginaria de la energía:

εUP,LP
k = 1

2

δk + 2εx
k ±

√√√√√(δ2
k + 4(Ω2

R − Ω2
im))2 + (8ΩRΩim)2 + δ2

k + 4(Ω2
R − Ω2

im)
2



γUP,LP
k = ±1

2

√√√√√(δ2
k + 4(Ω2

R − Ω2
im))2 + (8ΩRΩim)2 − (δ2

k + 4(Ω2
R − Ω2

im))
2

Como en el caso anterior, primero analicemos la situación para momento cero con la
normalización correcta; de modo que la expresión toma la siguiente forma:

εUP,LP

2ΩR

= 1
2

δ̃ ±

√√√√√
√(

δ̃2 + (1 − Ω̃2)
)2

+ (2Ω̃)2 + δ̃2 + (1 − Ω̃2)
2

 (3.6)

γUP,LP

2ΩR

= ∓1
2

√√√√√
√(

δ̃2 + (1 − Ω̃2)
)2

+ (2Ω̃)2 − (δ̃2 + (1 − Ω̃2))
2 (3.7)

Donde Ω̃ = Ωim/ΩR y δ̃ = δ/2ΩR. La gráfica de la parte real e imaginaria, ecuaciones 3.6
y 3.7, se muestran en la Figura 7 para diferentes valores de Ω̃, especialmente para la 7(a)
podemos ver las diferencias en comparación al caso coherente. En particular, vemos que
a valores más grandes de Ω̃ hay una mayor atracción de niveles caracterizada por la ten-
dencia a formar un cuello de botella entre ambos modos, esto confirmado también por la
parte imaginaria, ya que esa separación entre las ramas es característica de la atracción
de niveles [3, 4, 22, 23]. Sin embargo, el gap de mantiene constante independientemente
de los valores de Ω̃, creando esas rectas de máximo acercamiento entre niveles donde la
separación es constante. Otra cosa que debemos notar, es que a mayores valores de Ω̃ las
curvas de energías pueden cruzar la curva de la parte fotónica y excitónica. Por ejemplo,
tomando la rama de los polaritones abajo con Ω̃ = 3, cuando δ > 0 y la parte excitónica
comienza a dominar, vemos que la curva rebasa el límite de la energía de los excitones,
lo cual físicamente no tiene sentido tener tanta disipación en el acoplamiento, ya que no
estaría dentro de los límites del acoplamiento fuerte [3].

Retomando las expresiones para la parte real e imaginaria de la energía, podemos aho-
ra graficarlas en función del momento usando las definiciones de la desintonización. Las
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3.1 Caso 1 3 DISIPACIÓN EN EXCITONES-POLARITONES

(a)

(b)

Figura 7: Espectro de energía de los excitones-polaritones para diferentes valores de Ω̃
como función de la desintonización. (a) Parte real y (b) la parte imaginaria. Las líneas
punteadas corresponden a la energía de los sistemas no interactuantes.
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3.1 Caso 1 3 DISIPACIÓN EN EXCITONES-POLARITONES

(a)

(b)

Figura 8: Espectro de energía de los excitones-polaritones para diferentes valores de Ω̃
como función del momento. (a) Parte real y (b) la parte imaginaria. Las líneas punteadas
corresponden a la energía de los sistemas no interactuantes.

gráficas se muestran en la Figura 8. En la primera vemos la parte real exhibiendo, de nue-
vo, una atracción de niveles entre los dos modos, y al igual que en el caso en función de
la desintonización, el gap se mantiene constante para diferentes valores del acoplamien-
to disipativo. También, la relación de dispersión exhibe claramente un comportamiento
anómalo, los puntos de inflexión son ahora mucho más pronunciados que en el caso cohe-
rente [17], lo que dará lugar a valores diferentes en los parámetros de masa.

3.1.1. Masa efectiva, caso 1

Dicho lo anterior para el caso coherente, esperamos que el acoplamiento disipativo afecte
a la dinámica de los polaritones, dichos efectos se verán manifestados en los parámetros
de masa. Además, ya vimos que la relación de dispersión en este caso presenta un com-
portamiento anómalo, por lo tanto, esperamos un resultado diferente para las masas [9].
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3.1 Caso 1 3 DISIPACIÓN EN EXCITONES-POLARITONES

Retomando las expresiones para los parámetros de masa, calculamos de nuevo las deriva-
das, que tendrán prácticamente la misma forma, con la diferencia de que la constante de
acoplamiento es compleja, debido a la inclusión de la disipación.

∂ε

∂k
= 1

2

{(
k

mc

+ k

mx

)
±
[(

δ2
k + 4(ΩR − iΩim)2

)−1/2
δk

(
k

mc

− k

mx

)]}

∂2ε

∂k2 = 1
2

( 1
mc

+ 1
mx

)
∓ 1

2
(
δ2

k + 4(ΩR − iΩim)2
)−3/2

δ2
k

(
k

mc

− k

mx

)2

±1
2
(
δ2

k + 4(ΩR − iΩim)2
)−1/2

(
k

mc

− k

mx

)2

± 1
2
(
δ2

k + 4(ΩR − iΩim)2
)−1/2

δk

( 1
mc

− 1
mx

)
.

Hacemos al momento cero para dejar a la masa en términos de la desintonización. Lo que
nos queda es similar al caso coherente:

∂2ε

∂k2

∣∣∣∣∣
k=0

= 1
2


( 1

mc

+ 1
mx

)
± δ (1/mc − 1/mx)√

δ2 + 4(ΩR − iΩim)2


= 1

mc

1
2

1 ± δ√
δ2 + 4(ΩR − iΩim)2

+ 1
mx

1
2

1 ∓ δ√
δ2 + 4(ΩR − iΩim)2



Identificamos a los coeficientes de Hopfield modificados, de modo que la masa efectiva
queda en términos de éstos:

1
m∗

UP

= C̃2

mc

+ S̃2

mx

(3.8)

1
m∗

LP

= S̃2

mc

+ C̃2

mx

(3.9)

Como se trata de valores complejos, debemos separar la parte real de la imaginaria, en la
Figura 9 se muestra la gráfica de las masas. Al igual que en el caso coherente en el punto
de máxima hibridación (δ = 0), la masa toma el valor de m∗ = 2mxmc/(mx + mc).
Cuando Ω̃ es pequeño la masa tiende a la forma del caso coherente, en cuanto este factor
crece, la curvatura de la masa efectiva empieza a tener un cambio en intervalos cada vez
más grandes de δ. Si nos fijamos en un valor constante de δ, la masa tiende a ser menor
para valores más grandes de Ω̃, esto lo podemos atribuir a que en cuanto más grande sea
la disipación en el acoplamiento, la interacción entre ambos sistemas será menor, lo que
conlleva a un valor menor de la masa, pues como hemos mencionado la masa efectiva
se manifiesta debido a las interacciones del sistema. También, es importante notar que
para valores cada vez más grandes de la disipación los puntos donde la masa se vuelve
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3.1 Caso 1 3 DISIPACIÓN EN EXCITONES-POLARITONES

(a) Masa efectiva de los polaritones arriba.

(b) Masa efectiva de los polaritones abajo.

Figura 9: Masa efectiva de los polaritones en función de la desintonización, para diferentes
valores de Ω̃.

negativa serán cada vez menor. Para ver el comportamiento de la masa en función de la
desintonización δ y la disipación Ω̃ se muestra en la Figura 10 un mapa de densidad para
la masa efectiva, en concordancia con el caso coherente, el máximo crecimiento de la
masa será en la recta para Ω̃ = 0 pero conforme la disipación crece la masa tiene valores
cada vez más bajos, hasta llegar a valores de cero y negativos. En la Figura 10(a) para
los polaritones arriba, la masa negativa se presenta para valores cada vez menores de δ
conforme la disipación crece, como lo indica la curva color negro.

La recta que nos da los puntos donde la masa efectiva es cero, la obtenemos mediante la
siguiente ecuación:

Re

1
2


( 1

mc

+ 1
mx

)
± δ (1/mc − 1/mx)√

δ2 + 4(ΩR − iΩim)2


−1

= 0 (3.10)
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3.2 Caso 2 3 DISIPACIÓN EN EXCITONES-POLARITONES

(a) Masa de los polaritones arriba. (b) Masa de los polaritones abajo.

Figura 10: Mapa de densidad para la masa efectiva dependiendo de la desintonización y
Ω̃. En negro se muestran las curvas donde la masa es cero m∗ = 0.

Por otro lado, podemos ver el comportamiento de los parámetros de masa con respecto al
momento de los polaritones abajo. Como anticipamos, la dispersión para este caso es no-
toriamente anómala, ya que los puntos de inflexión en la curvatura son más pronunciados
que en el caso coherente. Esto se muestra en la Figura 11, en este caso la masa inercial
sí tomará valores negativos pasando los puntos de inflexión de la relación de dispersión,
dada la definición de la masa inercial en términos de la velocidad de grupo, podemos
interpretar esas zonas donde m1 es negativa como aquellas donde si se le aplica un im-
pulso al grupo, éste se moverá en dirección opuesta al impulso, esto se ha demostrado
experimentalmente y además, la condición para que se manifieste este fenómeno es que
la disipación en el acoplamiento sea mayor que el acoplamiento coherente [9]. De manera
similar, m2 tiene valores negativos acorde a los puntos de inflexión.

3.2. Caso 2

Los excitones-polaritones, debido a la configuración en la que se consiguen, son intrínse-
camente un sistema que puede interactuar con sus alrededores. Por lo que para un estudio
del sistema a profundidad, debemos considerar aquellas variables relevantes debidas a su
interacción con los alrededores. En la sección anterior estudiamos el caso de la disipación
en el acoplamiento, lo que corresponde a la recombinación de algunos excitones y el es-
cape de algunos fotones fuera de la cavidad. Ahora, nos interesa ver cómo se modifica
el sistema bajo la disipación para cada parte constituyente, la material y fotónica. En los
excitones incluimos un factor de disipación y otro para los fotones debido a las imperfec-
ciones de los espejos y la configuración dentro de la cavidad. Siguiendo el mismo método
que en el caso 1, añadimos un término no hermitiano al hamiltoniano [20]. Por lo que el
sistema de excitones-polaritones quedará descrito por el siguiente hamiltoniano:

20 PROYECTO TERMINAL I



3.2 Caso 2 3 DISIPACIÓN EN EXCITONES-POLARITONES

Figura 11: Parámetros de masa para los polaritones abajo. En el gráfico inferior vemos la
relación de dispersión y en el superior los parámetros de masa m1 en rojo y m2 en azul.
Tomando Ω̃ = 2.

Ĥ =
∑

k

[
x̂†

k ĉ†
k

] [εx
k − iγx Ω

Ω εc
k − iγc

] [
x̂k
ĉk

]

=
∑

k
[(εx

k − iγx)x̂†
kx̂k + (εc

k − iγc)ĉ†
kĉk + Ω(x̂†

kĉk + ĉ†
kx̂k)]

Para encontrar las energías del sistema, proponemos la misma transformación que en los
dos casos anteriores, tomando a los coeficientes de Hopfield como en el caso coherente,
ecuación 2.4. También podemos obtener las energías para ambas ramas diagonalizando
directamente la matriz del hamiltoniano. Si planteamos el problema de eigenvalores, te-
nemos que:

∣∣∣∣∣ εx
k − iγx − ϵ Ω

Ω εc
k − iγc − ϵ

∣∣∣∣∣ = (εx
k − iγx − ϵ)(εc

k − iγc − ϵ) − Ω2

= ϵ2 + (i(γx + γc) − (εx
k + εc

k)) ϵ

+
(
εx

k(εc
k − iγc) − iγx(εc

k − iγc) − Ω2
)

= 0

(3.11)

Al resolver la ecuación de segundo grado y acomodando los términos de manera conve-
niente, encontramos las energías para ambos modos:
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3.2 Caso 2 3 DISIPACIÓN EN EXCITONES-POLARITONES

εUP,LP
k − iγUP,LP

k = 1
2

(
δk + 2εx

k − i(γx + γc) ±
√

[δk − i(γc − γx)]2 + 4Ω2
)

(3.12)

Como de nuevo nos interesan la parte real e imaginaria de las energías, usamos la misma
expresión del caso anterior:

√
[δk − i(γc − γx)]2 + 4Ω2 =

√
[δ2

k − (γc − γx)2 + 4Ω2] − i [2δk(γc − γx)]

Proseguimos a escribir la parte real e imaginaria de la energía:

εUP,LP
k = 1

2δk + εx
k

±1
2

√√√√√[δ2
k − (γc − γx)2 + 4Ω2]2 + 4δ2

k(γc − γx)2 + δ2
k − (γc − γx)2 + 4Ω2

2

γUP,LP
k = 1

2(γx + γc)

±

√√√√√[δ2
k − (γc − γx)2 + 4Ω2]2 + 4δ2

k(γc − γx)2 − (δ2
k − (γc − γx)2 + 4Ω2)

2

Con esto ya podríamos graficar la energía de los polaritones, sin embargo, podemos hacer
una aproximación para que las expresiones tomen una forma más sencilla, dado que ha-
cerlo analíticamente arroja expresiones más complejas. Tomemos la expresión 3.12, dado
que la diferencia (γc − γx) por lo general es menor a uno, realizamos una expansión en
serie de taylor de lo que está dentro de la raiz a segundo orden:

εUP,LP
k − iγUP,LP

k ≈ 1
2δk + εx

k − i

2(γx + γc) ± 1
2

√
δ2

k + 4Ω2

− i

2
δk(γc − γx)√

δ2
k + 4Ω2

= 1
2

(
δk + 2εx

k ±
√

δ2
k + 4Ω2

)

− i

γx
1
2

1 ± δk√
δ2

k + 4Ω2

+ γc
1
2

1 ∓ δk√
δ2

k + 4Ω2


(3.13)

Donde identificamos a εUP,LP
k con la energía de los polaritones superiores e inferiores para

el caso con acoplamiento coherente, para dicho caso también definimos a los coeficientes
de Hopfield, los cuales asociamos a la expresión obtenida como γUP

k = γxC2
k + γcS

2
k y
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γLP
k = γxS2

k + γcC
2
k . En consecuencia, al hacer la aproximación anterior hemos dejado a

la energía en términos de los coeficientes de Hopfield y la energía ya conocida del caso
coherente, que si bien sigue teniendo una parte real y otra imaginaria, esto es más fácil de
trabajar. Recordemos que al aplicar la transformación y diagonalizar el Hamiltoniano, lo
que ganamos es poder escribir el nuevo Hamiltoniano en términos de los operadores de
creación y anhiquilación de los polaritones arriba y abajo, con la forma de nuestra energía,
obtenemos lo siguiente:

Ĥ =
∑

k

[
L̂†

k Û †
k

] [εLP
k − iγLP

k 0
0 εUP

k − iγUP
k

] [
L̂k

Ûk

]
=
∑

k
(εLP

k − iγLP
k )L̂†

kL̂k + (εUP
k − iγUP

k )Û †
kÛk

(3.14)

Con todos estos resultados ya podemos graficar la energía de los polaritones, dado que
γc depende de la disipación que exista en el material del que estén hechos los espejos,
este parámetro lo podemos conocer experimentalmente de antemano. Por lo que podemos
dejar fijo γc y ver cómo varía nuestro sistema para diferentes valores de γx. Como se
observa en la Figura 12(a) existe una similitud entre cómo se comportan ambas ramas al
caso coherente y éste que estamos considerando, sin embargo, la inclusión de los nuevos
términos disipativos hace que la brecha entre ambos modos se reduzca para valores más
altos de γx [3]. Por otro lado, en el caso anterior veíamos que a mayor Ω̃ la energía de
los polaritones cruzaba las energías de los excitones y fotones no interactuantes, aquí
esto no se presenta, la energía de los polaritones muestra un acercamiento asintótico a
las energías de la parte material y fotónica, así como en el caso coherente, por lo tanto,
ese comportamiento puede ser atribuido al acoplamiento disipativo. También, a diferencia
del primer caso, en éste no observamos esas rectas en las que ambos modos tendían a
acercarse conforme Ω̃ crecía, siendo esto otra característica del acoplamiento disipativo,
es decir, la atracción de niveles [22, 16]. Lo más sobresaliente de este gráfico es que
la brecha disminuye conforme el valor γx también lo hace, creando puntos de máximo
acercamiento entre ambos modos, en específico las curvas moradas en la Figura 12(a) lo
exhiben de manera evidente, éstos se conocen como puntos excepcionales [3, 4] donde
las eigenenergías de cada rama tienden a adquirir valores iguales y el sistema se vuelve
degenerado, estos puntos también marcan la transición de valores reales a complejos de
las eigenenergías, sin embargo, en la imagen esto ocurre para valores muy grandes de
γx y fuera del acoplamiento fuerte, por lo que estas situaciones no son de mucho interés
físico. Este curioso fenómeno también se ilustra en la Figura 12(b) donde se muestran
las partes imaginarias de la eigenenergía de cada modo. Como se verá más adelante en
el texto, la información que nos da la parte imaginaria es que ésta se encuentra acotada
asintóticamente por los valores de disipación del sistema. Lo que sí podemos ver de la
gráfica y las expresiones, es que ambas ramas de la parte imaginaria se intersectan en
δ = 0, el punto está dado por γUP (δ = 0) = γLP (δ = 0) = (γc + γx)/2.

En la figura 13(a) se muestra el espectro de energía como función del momento. De nue-
vo, la inclusión de los nuevos términos disipativos crea una disminución de la brecha, al
igual que en la gráfica anterior, en ésta tampoco se presenta el caso donde la energía de los
polaritones rebasa a la de los excitones y fotones. Confirmando que eso sólo se presenta
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en el caso con acoplamiento disipativo, además, en ese caso la relación de dispersión se
volvía especialmente anómala gracias a eso, en este caso, si bien la curvatura cambia de
manera apreciable, no parece que difiera demasiado del caso coherente. Por lo tanto, la
relación de dispersión anómala es también una característica del acoplamiento disipati-
vo, y en consecuencia, también la aparición de la masa negativa [17, 9]; recordemos que
la masa negativa aparece debido a la curvatura de la relación de dispersión. En la Figu-
ra 13(b) la parte imaginaria de la energía muestra las mismas características que en la
gráfica anterior.

¿Cómo podemos entender la disminución de la brecha? Partamos del hecho de que a
diferencia del caso coherente, aquí las energías son números complejos, donde la parte
imaginaria nos da la tasa de decaimiento. Por lo tanto, al existir términos de disipación
para cada parte del sistema, ambas partes están perdiendo energía a diferentes ritmos, y
ese es el punto importante, que la tasa de decaimiento para ambas partes es diferente.
Pensemos que el sistema quiere equilibrar esta pérdida de ambas partes mezclando ambos
modos, dando lugar a una disminución de la brecha o diferencia de fases (como se verá
más adelante), fruto de equlibrar las tasas de decaimiento en cada sistema.

3.2.1. Masa efectiva, caso 2

Con la expresión de la energía para los polaritones, podemos repetir el proceso y calcular
las derivadas con respecto al momento y así obtener cómo se ven las masas efectivas para
este caso:

∂ε

∂k
= 1

2

(
k

mc

+ k

mx

)
± 1

2
(
(δk − i(γc − γx))2 + 4Ω2

)−1/2

× (δk − i(γc − γx))
(

k

mc

− k

mx

)

Para la segunda derivada obtenemos lo siguiente:

∂2ε

∂k2 = 1
2

( 1
mc

+ 1
mx

)
± 1

2
(
(δk − i(γc − γx))2 + 4Ω2

)−1/2
(

k

mc

− k

mx

)2

± 1
2
(
(δk − i(γc − γx))2 + 4Ω2

)−1/2
(δk − i(γc − γx))

( 1
mc

− 1
mx

)

∓ 1
2
(
(δk − i(γc − γx))2 + 4Ω2

)−3/2
(δk − i(γc − γx))2

(
k

mc

− k

mx

)2

(3.15)

Con esto ya tendríamos las expresiones para poder graficar la masa efectiva, sin embargo,
hagamos uso de la expresión aproximada para obtener una forma más simple de la masa
efectiva a momento cero. Tomando la ecuación 3.25, la segunda derivada está dada por:
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(a) Energía como función de la desintonización.

(b) Parte imaginaria de la energía.

Figura 12: Espectro de energía de los exitones-polaritones como función de la desinto-
nización para diferentes valores de γx manteniendo γc = 0.1.En (a) las líneas punteadas
corresponden a la energía de los excitones y fotones por sí solos.
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(a) Energía como función del momento.

(b) Parte imaginaria de la energía.

Figura 13: Espectro de energía de los exitones-polaritones como función del momento
para diferentes valores de γx manteniendo γc = 0.1.En (a) las líneas punteadas correspon-
den a la energía de los excitones y fotones no interactuantes.
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∂2ε

∂k2 = ∂2εUP,LP
k

∂k2 − i
∂2γUP,LP

k

∂k2 (3.16)

Donde el primer término de ésta ecuación ya lo conocemos, es la masa efectiva que calcu-
lamos para el caso coherente. Para el segundo término, ya vimos que depende únicamente
de los coeficientes de Hopfield, por lo tanto, si queremos la segunda derivada, prime-
ro debemos obtener las derivadas de los coeficientes de Hopfield. Lo cual resulta en lo
siguiente:

∂C2
k

∂k
= 1

2

k/mc − k/mx√
δ2

k + 4Ω2
− (k/mc − k/mx)δ2

k

(δ2
k + 4Ω2)3/2


∂S2

k

∂k
= 1

2

(k/mc − k/mx)δ2
k

(δ2
k + 4Ω2)3/2 − k/mc − k/mx√

δ2
k + 4Ω2


Y la segunda derivada:

∂2C2
k

∂k2 = 3
2

(k/mc − k/mx)2δ3
k

(δ2
k + 4Ω2)5/2 − 3

2
(k/mc − k/mx)2δk

(δ2
k + 4Ω2)3/2

− 1
2

(1/mc − 1/mx)δ2
k

(δ2
k + 4Ω2)3/2 + 1

2
(1/mc − 1/mx)√

δ2
k + 4Ω2

(3.17)

Esto para un solo coeficiente, para el siguiente tenemos:

∂2S2
k

∂k2 = 3
2

(k/mc − k/mx)2δk

(δ2
k + 4Ω2)3/2 − 3

2
(k/mc − k/mx)2δ3

k

(δ2
k + 4Ω2)5/2

+ 1
2

(1/mc − 1/mx)δ2
k

(δ2
k + 4Ω2)3/2 − 1

2
(1/mc − 1/mx)√

δ2
k + 4Ω2

(3.18)

De este modo, ya tenemos todo para escribir las expresiones para la masa efectiva a mo-
mento cero. Esto es:

1
m∗

UP

= C2

mc

+ S2

mx

− i

(
1
2

(1/mc − 1/mx)√
δ2 + 4Ω2

(γc − γx)
(

δ2

δ2 + 4Ω2 − 1
))

(3.19)

Esto para los polaritones arriba a momento cero. Para los polaritones abajo:

1
m∗

LP

= S2

mc

+ C2

mx

− i

(
1
2

(1/mc − 1/mx)√
δ2 + 4Ω2

(γc − γx)
(

1 − δ2

δ2 + 4Ω2

))
(3.20)
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Con estas expresiones recién encontradas, podemos graficar la masa efectiva como fun-
ción de la desintonización tomando la parte real del inverso de las expresiones 3.19 y 3.20,
tal como se observa en la figura 14. Vemos que la forma de las curvas es similar al caso
coherente, al menos para valores pequeños de γx, ya que en cuanto la disipación crece
se presenta un decaimiento similar al de las gráficas de la figura 9. Además, en los casos
anteriores, la masa era la misma para el punto de máxima hibridación, en este caso existe
una brecha entre los valores de la masa en el punto δ = 0 que varía dependiendo del valor
de γx. Lo relevante, es que de acuerdo a las expresiones para la masa efectiva 3.19 y 3.20,
el término que involucra los valores de la disipación es (γc − γx) no ambos por separado,
por lo tanto, el cómo varíe la masa en este caso depende de cómo se comparan ambos
valores. Para la masa de los polaritones superiores, si la diferencia entre los términos de
disipación es pequeña, ésta se aproxima cada vez más al valor del caso coherente en el
punto de máxima hibridación, en cambio, si la diferencia es muy grande (γx ≫ γc) la
masa en este punto disminuirá cada vez más, en concordancia al significado que tenemos
de la disipación, ya que si ésta es mayor en la parte material que en la fotónica, quiere
decir que existe un mayor decaimiento en los excitones que en los fotones, dando lugar
a que la masa efectiva sea dominada por la parte fotónica y como ésta tiene un valor pe-
queño, la masa del sistema disminuye cada vez más conforme la disipación aumenta. De
manera similar ocurre en el caso de los polaritones inferiores, pero con la diferencia de
que la masa aumenta en el punto de máxima hibridación conforme γx también aumenta,
esto en concordancia con la diferencia de signo obtenida en las expresiones para la masa
efectiva. En conclusión, esta brecha que vemos en los valores de la masa en el punto de
máxima hibridación es una característica de la disipación de cada elemento por separado,
a diferencia del caso con acoplamiento disipativo.

Al igual que en el caso de la sección anterior, la masa efectiva de ambas ramas puede
llegar a tener valores negativos y por lo tanto, existen puntos donde m∗ = 0. Los cuales
podemos encontrar resolviendo las siguientes ecuaciones:

Re

C2

mc

+ S2

mx

− i

1
2

(1/mc − 1/mx)√
δ2

k + 4Ω2
(γc − γx)

(
δ2

δ2
k + 4Ω2 − 1

) = 0

Re

S2

mc

+ C2

mx

− i

1
2

(1/mc − 1/mx)√
δ2

k + 4Ω2
(γc − γx)

(
1 − δ2

δ2
k + 4Ω2

) = 0

Resolviendo estas ecuaciones, podemos ver gráficamente los puntos donde la masa se
hace cero para diferentes valores de la desintonización y γx. Esto con un density plot
como se muestra en la Figura 15, donde se ha puesto en negro las curvas donde la masa
efectiva vale cero. A diferencia del caso 1, las zonas con masa negativa son menores
para este caso, confirmando que la masa negativa se presenta en mayor grado debido al
acoplamiento disipativo. Además, las curvas de masa cero se presentan a grandes valores
de γx, al igual que en el punto de máxima hibridación se aprecia la brecha que existe entre
la masa para diferentes valores de la disipación. Otra cosa relevante, es que si comparamos
con la figura 10, allí el crecimiento de la masa para valores grandes de la desintonización
se ve ampliamente afectada por el factor Ω̃, en este caso, el crecimiento de las masas no
tiene una diferencia apreciable respecto al caso coherente.
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(a) Masa efectiva UP.

(b) Masa efectiva LP.

Figura 14: Masa efectiva para los polaritones como función de la desintonización para
diferentes valores de γx fijando γc = 0.1.

(a) Masa de los polaritones arriba. (b) Masa de los polaritones abajo.

Figura 15: Mapa de densidad para la masa efectiva dependiendo de la desintonización y
γx. En negro, líneas continuas, se muestran las curvas donde la masa es cero. Las líneas
negras punteadas corresponden a γx = 1.
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Figura 16: Parámetros de masa para los polaritones abajo. En el gráfico inferior vemos la
relación de dispersión y en el superior los parámetros de masa m1 en rojo y m2 en azul.
Tomando γx = 0.7.

Ahora podemos estudiar cómo se comportan los parámetros de masa en función del mo-
mento para la relación de dispersión de los polaritones inferiores. Anticipamos que el
comportamiento debe ser similar al del caso coherente, sin embargo, al introducir la di-
sipación deben aparecer las brechas para diferentes valores de γx. Como vemos en la
figura 16 el comportamiento de los parámetros de masa es similar al caso coherente, prin-
cipalmente en el hecho de que para la masa inercial no hay valores negativos dentro del
rango apropiado para el sistema. Como ya habíamos anticipado, la masa negativa no apa-
rece debido a que la relación de dispersión es similar al caso coherente, todo lo contrario
para el caso 1. Para la masa de difusión, vemos un cambio significativo respecto al caso 1
y el caso coherente. En primer lugar, en el caso 1 y el coherente, no aparecen esos peque-
ños valles en las ramas negativas del parámetro m2. Al igual que debido a los cambios de
curvatura presentes en el caso 1, allí existen más puntos de inflexión en donde el signo de
la masa cambia, a diferencia de lo que observamos en este caso.

3.3. Caso 3

Ya examinos los casos donde la disipación se encuentra, por separado, en los elementos
y el acoplamiento. Ahora, consideremos el caso completo de la disipación en los excito-
nes polaritones. Para eso, al tener los dos casos anteriores al mismo tiempo, tenemos el
siguiente hamiltoniano:
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Ĥ =
∑

k

[
x̂†

k ĉ†
k

] [ εx
k − iγx ΩR − iΩim

ΩR − iΩim εc
k − iγc

] [
x̂k
ĉk

]
=
∑

k
[(εx

k − iγx)x̂†
kx̂k + (εc

k − iγc)ĉ†
kĉk + (ΩR − iΩim)(x̂†

kĉk + ĉ†
kx̂k)]

(3.21)

Con los resultados de los dos casos anteriores, seguimos un procedimiento análogo. Así
que si proponemos la transformación 2.3 usando los coeficientes de Hopfield tal y como
los definimos para el caso 1, con acoplamiento disipativo. Podemos diagonalizar el ha-
miltoniano y obtener las eigenenergías. Del mismo modo, también podemos obtenerlas
encontrando los eigenvalores de la matriz:

∣∣∣∣∣ εx
k − iγx − ϵ ΩR − iΩim

ΩR − iΩim εc
k − iγc − ϵ

∣∣∣∣∣ = (εx
k − iγx − ϵ)(εc

k − iγc − ϵ) − (ΩR − iΩim)2

= ϵ2 + (i(γx + γc) − (εx
k + εc

k)) ϵ

+
(
εx

k(εc
k − iγc) − iγx(εc

k − iγc) − (ΩR − iΩim)2
)

= 0
(3.22)

Por lo tanto, los valores de la energía, son:

εUP,LP
k −iγUP,LP

k = 1
2

(
δk + 2εx

k − i(γx + γc) ±
√

(δk − i(γc − γx))2 + 4(ΩR − iΩim)2
)

(3.23)

De nuevo, nos interesa ver la parte real e imaginaria de esta expresión, para esto, usamos
la expresión 3.4. Obtenemos:

√
(δk − i(γc − γx)) + 4(ΩR − iΩim)2 =

√
[δ2

k − (γc − γx)2 + 4(Ω2
R − Ω2

im)]
−i [2δk + 8ΩRΩim]

(3.24)

Uniendo esto con 3.23, tenemos:

εUP,LP
k = 1

2δk + εx
k

±1
2

√√√√√[δ2
k − (γc − γx)2 + 4(Ω2

R − Ω2
im)]2 + [2δk + 8ΩRΩim]2 + δ2

k − (γc − γx)2 + 4(Ω2
R − Ω2

im)
2
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γUP,LP
k = 1

2(γx + γc) ± δk + 4ΩRΩim

|2δk + 8ΩRΩim|

×

√√√√√[δ2
k − (γc − γx)2 + 4(Ω2

R − Ω2
im)]2 + [2δk + 8ΩRΩim]2 − (δ2

k − (γc − γx)2 + 4(Ω2
R − Ω2

im))
2

De igual forma, con esto ya podríamos graficar las energías y calcular la masa efectiva.
Sin embargo, hagamos la misma aproximación que en el caso 2:

εUP,LP
k − iγUP,LP

k ≈ 1
2δk + εx

k − i

2(γx + γc) ± 1
2

√
δ2

k + 4(ΩR − iΩim)2

− i

2
δk(γc − γx)√

δ2
k + 4(ΩR − iΩim)2

= 1
2

(
δk + 2εx

k ±
√

δ2
k + 4(ΩR − iΩim)2

)

− i

γx
1
2

1 ± δk√
δ2

k + 4(ΩR − iΩim)2

+ γc
1
2

1 ∓ δk√
δ2

k + 4(ΩR − iΩim)2


(3.25)

Donde identificamos de nueva cuenta a los coeficientes de Hopfield, pero esta vez con
la modificación del acoplamiento disipativo, ecuación 3.2. Así, γUP

k = γxC2
k + γcS

2
k

y γLP
k = γxS2

k + γcC
2
k . De la misma forma que en los otros casos, al diagonalizar el

hamiltoniano, podemos escribirlo de la siguiente manera:

Ĥ =
∑

k

[
L̂†

k Û †
k

] [εLP
k − iγLP

k 0
0 εUP

k − iγUP
k

] [
L̂k

Ûk

]

=
∑

k
(εLP

k − iγLP
k )L̂†

kL̂k + (εUP
k − iγUP

k )Û †
kÛk

(3.26)

Con esta información, ya podemos graficar la energía de los polaritones. Pero antes de ha-
cerlo, los dos casos pasados ya nos proveen de una intuición acerca de lo que esperamos
ver en este caso, no solo matemáticamente, sino que la interpretación física que hagamos
también se desprende de ellos. En primer lugar, el caso II indica que la presencia de los
parámetros γx y γc disminuyen la brecha entre ambos modos, además de la atracción de
niveles presente en el caso 1. Por otro lado, el acoplamiento disipativo, hará que las curvas
de ambos modos superen a las curvas de energía de los excitones y fotones no interactuan-
tes, tal como en la figura 8 y 7. También esperamos que el acoplamiento disipativo haga
que la curvatura de la relación de dispersión sea anómala, dando lugar a la masa nega-
tiva. Esto se confirma en las figuras 17 y 18, específicamente, en la 17(a) se aprecia la
aparición de los puntos excepcionales, sin embargo, éstos se encuentran desplazados ha-
cia la derecha. Atribuimos esto a la presencia del acoplamiento disipativo, así como en
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(a) Energía como función de la desintonización.

(b) Parte imaginaria de la energía.

Figura 17: Espectro de energía de los excitones-polaritones como función de la desinto-
nización para diferentes valores de γx manteniendo γc = 0.1 y Ω̃ = 1. En (a) las líneas
punteadas corresponden a la energía de los excitones y fotones no interactuantes, en línea
negra se muestra la energía de los excitones-polaritones para el caso coherente.

parte imaginaria de la figura 17(b) los puntos excepcionales se manifiestan cuando ambas
ramas se aproximan una de la otra, en el caso 2 esto sucedía en el punto de máxima hibri-
dación. En la figura 18 se presentan la parte real e imaginaria de la energía como función
del momento, como mencionamos es clara la contribución del acoplamiento disipativo en
la curvatura anómala de la relación de dispersión y la disminución de la brecha, conse-
cuencia de la disipación en cada elemento del sistema. En la 18(b) la atracción de niveles
se manifiesta cuando ambas ramas se separan, además, los puntos excepcionales apare-
cen para valores más grandes de γx, dado que para esos valores, ambas ramas tienden a
coincidir en algún punto.
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(a) Energía como función del momento.

(b) Parte imaginaria de la energía.

Figura 18: Espectro de energía de los excitones-polaritones como función del momento
para diferentes valores de γx manteniendo γc = 0.1 y Ω̃ = 1. En (a) las líneas punteadas
corresponden a la energía de los excitones y fotones no interactuantes, en línea negra se
muestra la energía de los excitones-polaritones para el caso coherente.
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3.3.1. Masa efectiva, caso 3

Con la ecuación 3.23 podemos derivar y obtener los parámetros de masa, lo cual será muy
similar al caso 2:

∂ε

∂k
= 1

2

(
k

mc

+ k

mx

)
± 1

2
(
(δk − i(γc − γx))2 + 4(ΩR − iΩim)2

)−1/2

× (δk − i(γc − γx))
(

k

mc

− k

mx

) (3.27)

Y para la segunda derivada:

∂2ε

∂k2 = 1
2

( 1
mc

+ 1
mx

)
± 1

2
(
(δk − i(γc − γx))2 + 4(ΩR − iΩim)2

)−1/2
(

k

mc

− k

mx

)2

± 1
2
(
(δk − i(γc − γx))2 + 4(ΩR − iΩim)2

)−1/2
(δk − i(γc − γx))

( 1
mc

− 1
mx

)

∓ 1
2
(
(δk − i(γc − γx))2 + 4(ΩR − iΩim)2

)−3/2
(δk − i(γc − γx))2

(
k

mc

− k

mx

)2

(3.28)

Como en el caso anterior, usemos la expresión aproximada para la energía, así obtendre-
mos unas ecuaciones para la masa efectiva muy parecidas a las del caso 2. De nueva cuenta
debemos derivar los coeficientes de Hopfield, en este caso serán los de la ecuación 3.2.
De modo que:

∂C2
k

∂k
= 1

2

 k/mc − k/mx√
δ2

k + 4(ΩR − iΩim)2
− (k/mc − k/mx)δ2

k

(δ2
k + 4(ΩR − iΩim)2)3/2


∂S2

k

∂k
= 1

2

 (k/mc − k/mx)δ2
k

(δ2
k + 4(ΩR − iΩim)2)3/2 − k/mc − k/mx√

δ2
k + 4(ΩR − iΩim)2



Y la segunda derivada:

∂2C2
k

∂k2 = 3
2

(k/mc − k/mx)2δ3
k

(δ2
k + 4(ΩR − iΩim)2)5/2 − 3

2
(k/mc − k/mx)2δk

(δ2
k + 4(ΩR − iΩim)2)3/2

− 1
2

(1/mc − 1/mx)δ2
k

(δ2
k + 4(ΩR − iΩim)2)3/2 + 1

2
1/mc − 1/mx√

δ2
k + 4(ΩR − iΩim)2

(3.29)
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Esto para un solo coeficiente, para el siguiente tenemos:

∂2S2
k

∂k2 = 3
2

(k/mc − k/mx)2δk

(δ2
k + 4(ΩR − iΩim)2)3/2 − 3

2
(k/mc − k/mx)2δ3

k

(δ2
k + 4(ΩR − iΩim)2)5/2

+ 1
2

(1/mc − 1/mx)δ2
k

(δ2
k + 4(ΩR − iΩim)2)3/2 − 1

2
1/mc − 1/mx√

δ2
k + 4(ΩR − iΩim)2

(3.30)

Con esto, ya podemos escribir la expresión de la masa efectiva a momento cero, la cual
está dada por:

1
m∗

UP

= C2

mc

+ S2

mx

− i

1
2

(1/mc − 1/mx)√
δ2

k + 4(ΩR − iΩim)2
(γc − γx)

(
δ2

δ2
k + 4(ΩR − iΩim)2 − 1

)
(3.31)

1
m∗

LP

= S2

mc

+ C2

mx

− i

1
2

(1/mc − 1/mx)√
δ2

k + 4(ΩR − iΩim)2
(γc − γx)

(
1 − δ2

δ2
k + 4(ΩR − iΩim)2

)
(3.32)

Las masas efectivas se encuentran en la figura 19, así como en las eigenenergías, lo que
esperamos es que se manifiesten características de los dos casos anteriores. Lo primero es
ver que la brecha entre las masas está presente debido al cambio en γx como se explicó en
el caso 2, por otro lado, debido al acoplamiento disipativo los valles en las curvas están
más presentes que en el caso 2, además de una presencia más clara de masas con valor
cero y negativas. Debido al acoplamiento disipativo, los valores negativos de la masa se
hacen más presentes, de modo que vale la pena estudiar cómo se comportan estos valores
en un mapa de densidad, así como las curvas donde m∗ = 0. La cual podemos graficar
mediante las siguientes ecuaciones:

Re

C2

mc

+ S2

mx

− i

1
2

(1/mc − 1/mx)√
δ2

k + 4(ΩR − iΩim)2
(γc − γx)

(
δ2

δ2
k + 4(ΩR − iΩim)2 − 1

) = 0

Re

S2

mc

+ C2

mx

− i

1
2

(1/mc − 1/mx)√
δ2

k + 4(ΩR − iΩim)2
(γc − γx)

(
1 − δ2

δ2
k + 4(ΩR − iΩim)2

) = 0

En la figura 20 tenemos las gráficas para diferentes valores de γx, para valores pequeños
la masa se comporta de manera similar a la del caso 1, pero en cuanto éste crece, vemos
que la distribución de los valores negativos de la masa cambia, pero además, si miramos
las curvas para masa cero, éstas se aproximan a los valores presentados en la figura 15.
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(a) Masa efectiva UP.

(b) Masa efectiva LP.

Figura 19: Masa efectiva para los polaritones como función de la desintonización para
diferentes valores de γx fijando Ω̃ = 1 y γc = 0.1.
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Esto se manifiesta en la deformación de la curva, como si fuera atraída hacía la zonas de
masa negativa en la figura 15.

Hasta ahora, en los casos anteriores, hemos hablado de aquellos puntos donde la masa
efectiva vale cero, sin embargo, ¿qué es lo que ésto significa? En la siguiente sección
abordaremos el caso de un sistema clásico para obtener mejores ideas conceptuales, sin
embargo, esta cuestión la podemos pensar de la siguiente manera: si un sistema se com-
portara como si su masa fuera cero, sería equivalente a un sistema sin ningún tipo de
fuerza externa actuando sobre él [24]. En el caso clásico de dos osciladores acoplados,
estos, así como el resorte, tienen un factor disipativo que permite la pérdida de energía
con los alrededores (tal y como sucede con los excitones-polaritones). Siendo un siste-
ma disipativo, también es conveniente pensarlo como poseedor de una masa efectiva, la
cual se verá afectada en función de la dinámica del sistema, que a su vez, depende de los
parámetros disipativos. Dicho esto, lo que se encuentra en el caso donde la masa efec-
tiva es cero, es que el sistema se comporta como un cuerpo rígido, dado que al poseer
un momento nulo, la fuerza inercial del sistema también es cero, lo que vendría a ser
equivalente al movimiento de un sistema sin masa. En nuestro caso, lo que ocurre con el
sistema con masa efectiva cero, es algo similar, tanto la parte material como fotónica del
sistema oscilan sin ningún desplazamiento de fase entre sí, es decir, algo equivalente a ese
comportamiento de “cuerpo rígido” [24].

Ahora, podemos graficar los parámetros de masa con las derivadas que ya calculamos,
esto se encuentra en la figura 21. Como el acoplamiento disipativo está presente, la masa
inercial negativa cobra más relevancia, a diferencia del caso 2 y en concordancia con el
caso 1 [9]. Para darle una mejor interpretación a la masa inercial negativa, recordemos que
ésta está relacionada con la velocidad de grupo. Por lo tanto, en la gráfica de la energía
presentada en la figura 21 tenemos dos puntos, si quisiéramos que el sistema pase del
punto azul al verde debemos aplicar un impulso (notando que estos puntos se encuentran
en una región donde m1 < 0), el paquete de ondas desacelera pero continúa propagándose
en la misma dirección [18]. Por otro lado, como la velocidad de grupo también tendrá
cambios de signo, cuando sea menor a cero (v < 0) al aplicarle un impulso el paquete
de onda no solo desacelera sino que cambia de dirección, esto en concordancia con lo
reportado en [9].

38 PROYECTO TERMINAL I



3.3 Caso 3 3 DISIPACIÓN EN EXCITONES-POLARITONES

(a) (b)

(c) (d)

(e) (f)

Figura 20: Mapa de densidad para la masa efectiva de los polaritones arriba y abajo de-
pendiendo de la desintonización y Ω̃, para diferentes valores de γx. En negro se muestran
las curvas donde la masa es cero m∗ = 0.
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Figura 21: Parámetros de masa para los polaritones abajo. En el gráfico inferior vemos
la relación de dispersión y en el superior los parámetros de masa. m1 en rojo y m2 en
azul.Tomando Ω̃ = 1 y γx = 0.7.

4. Interpretación clásica del acoplamiento

Como el sistema excitón-polaritón es en esencia dos osciladores acoplados fuertemente,
es instructivo analizar el caso clásico de dos osciladores acoplados de la misma manera.
Esto nos proporcionará mejor entendimiento de lo que está pasando en el sistema cuántico.
Por lo tanto, es de nuestro interés revisar los mismos casos que en el de los excitones
polaritones: caso coherente sin disipación de ningún tipo, disipaciones en los osciladores
individuales pero no en el acoplamiento, disipación en el acoplamiento pero no en los
osciladores individuales y el caso disipativo completo.

Partamos del hecho de que un acoplamiento de cualquier tipo ocurre cuando dos osci-
ladores están “conectados” de algún modo, de tal forma que lo que le suceda a uno sea
capaz de afectar al otro. Esta configuración implica, intrínsecamente, un intercambio de
energía entre cada oscilador [4]; pero lo relevante será si la energía total del sistema se
conserva o existen pérdidas debido a algún efecto disipativo. De modo que podemos hacer
la siguiente distinción:

Acoplamiento coherente: existe un intercambio de energía propio de la configura-
ción del sistema, sin embargo, no existen pérdidas de energía, por lo que el sistema
es conservativo.

Acoplamiento disipativo: de nuevo son dos sistemas intercambiando energía debi-
do a algún tipo de interacción, pero ahora existen pérdidas de energía con el ”me-
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dio”, donde el medio podría ser cualquier cosa que no pertenezca a la configuración
del sistema y en donde existan pérdidas de energía. Para el caso clásico de dos osci-
ladores, el efecto disipativo aparecerá cuando exista una dependencia de la posición
o velocidad en el término de acoplamiento.

Consideremos un sistema de dos osciladores, en específico dos péndulos, acoplados por
un resorte. El que exista un acoplamiento coherente o disipativo dependerá de la confi-
guración del sistema. De manera general podemos escribir las ecuaciones de movimiento
para los grados de libertad ϕ1 y ϕ2, siguiendo las ideas presentadas en [3], de la siguiente
forma:

ϕ̈1 + 2λ1ϕ̇1 + ω2
1ϕ1 − f1(ϕ1, ϕ̇1) = 2J1ω1(ϕ1 − ϕ2) + 2Γ1(ϕ̇2 − ϕ̇1) (4.1)

ϕ̈2 + 2λ2ϕ̇2 + ω2
2ϕ2 − f2(ϕ2, ϕ̇2) = 2J2ω2(ϕ2 − ϕ1) + 2Γ2(ϕ̇1 − ϕ̇2) (4.2)

Donde el lado izquierdo de ambas ecuaciones describe a cada oscilador en solitario. Los
términos ω1,2 =

√
g/l1,2 corresponden a las frecuencias naturales de cada oscilador, y

éste es el término de restauración lineal propio de un oscilador. Además se incluye una
fuerza de fricción lineal con coeficiente de amortiguamiento λ1,2 para cada oscilador, es-
tos términos serían equivalentes a lo que en los excitones polaritones llamamos γx y γc.
El término con f1,2 corresponde a términos no lineales, ya sean de restauración (depen-
dientes de ϕ1,2) o de fricción (dependientes de ϕ̇1,2), los cuales ignoraremos para mayor
facilidad. Los términos del lado derecho caracterizan al acoplamiento entre ambos oscila-
dores, los primeros términos que son proporcionales a la diferencia entre las coordenadas
(ϕ1,2 − ϕ2,1) corresponden al acoplamiento coherente con constante de acoplamiento J1,2.
Por otro lado, los términos proporcionales a la diferencia de velocidades (ϕ̇1,2 − ϕ̇2,1) ha-
cen que la disipación en el acoplamiento aparezca, con constante de acoplamiento Γ1,2.
En general, estas ecuaciones no tienen solución analítica, sin embargo, podemos hacer
algunas consideraciones razonables para obtener resultados satisfactorios [25]. En primer
lugar, asumimos que no hay términos no lineales, es decir, f1,2 = 0. Además, para la
mayoría de situaciones se cumple que λ1,2 ≫ J1,2 y Γ1,2 ≪ ω1,2. Como nos interesa
saber cómo se comportan los modos que caracterizan al sistema, proponemos la siguiente
solución con sus respectivas derivadas:

ϕ1,2 = A1,2e
iω̃t (4.3)

ϕ̇1,2 = A1,2iω̃eiω̃t (4.4)

ϕ̈1,2 = −A1,2ω̃
2eiω̃t (4.5)

Donde ω̃ son las eigenfrecuencias. Para encontrarlas, sustituimos éstas expresiones en 4.1:
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−A1ω̃
2eiω̃t + ω2

1A1e
iω̃t + 2λ1A1iω̃eiω̃t

+2J1ω1(A2e
iω̃t − A1e

iω̃t) + 2Γ1(A1iω̃eiω̃t − A2iω̃eiω̃t) = 0

−A2ω̃
2eiω̃t + ω2

2A2e
iω̃t + 2λ2A2iω̃eiω̃t

+2J2ω2(A1e
iω̃t − A2e

iω̃t) + 2Γ2(A2iω̃eiω̃t − A1iω̃eiω̃t) = 0

Reescribimos éstas ecuaciones usando la espresión para ϕ1,2 y sus derivadas:

−ω̃2ϕ1 + ω2
1ϕ1 + 2λ1iω̃ϕ1 + 2J1ω1(ϕ2 − ϕ1) + 2Γ1iω̃(ϕ1 − ϕ2) = 0 (4.6)

−ω̃2ϕ2 + ω2
2ϕ2 + 2λ2iω̃ϕ2 + 2J2ω2(ϕ1 − ϕ2) + 2Γ2iω̃(ϕ2 − ϕ1) = 0 (4.7)

Si identificamos todos los términos que multiplican a ϕ1 y ϕ2, podemos factorizarlos y
escribir las ecuaciones en forma matricial, lo cual queda de la siguiente forma:

(
−ω̃2 + ω2

1 + 2λ1iω̃ − 2ω1J1 + 2iω̃Γ1 2ω1J1 − 2iω̃Γ1
2ω2J2 − 2iω̃Γ2 −ω̃2 + ω2

2 + 2iλ2ω̃ − 2ω2J2 + 2iω̃Γ2

)(
ϕ1
ϕ2

)
= 0

(4.8)

Dadas las suposiciones que hicimos, podemos aproximar las eigenfrecuencias: ω1,2 + ω̃ ≈
2ω̃. De tal modo que podemos reescribir la matriz como sigue:

2ω̃

(
−ω̃ + ω1 + iλ1 − J1 + iΓ1 J1 − iΓ1

J2 − iΓ2 −ω̃ + ω2 + iλ2 − J2 + iΓ2

)(
ϕ1
ϕ2

)
= 0 (4.9)

Conviene cambiar a un marco de referencia rotado, en el que definimos ωref = (ω1 +
ω2)/2, con esto, las eigenfrecuencias en el marco original deben ser modificadas. Para
esto definimos unas nuevas frecuencias en el nuevo marco ω̃′ = ω̃ − ωref .(

ω1 − ωref + iλ1 − J1 + iΓ1 − ω̃′ J1 − iΓ1
J2 − iΓ2 ω2 − ωref + iλ2 − J2 + iΓ2 − ω̃′

)(
ϕ1
ϕ2

)
= 0

(4.10)
Ahora definimos la desintonización entre ambos osciladores ∆ = ω2 − ω1, de tal modo
que: (

−1
2∆ + iλ1 − J1 + iΓ1 − ω̃′ J1 − iΓ1

J2 − iΓ2
1
2∆ + iλ2 − J2 + iΓ2 − ω̃′

)(
ϕ1
ϕ2

)
= 0 (4.11)

Para darle solución al sistema, el determinante de la matriz debe ser cero, por lo que así
podemos encontrar las eigenfrecuencias. Esto nos arroja una ecuación de segundo gra-
do para ω̃′, la cual después de resolverla y simplificar con algo de álgebra, nos arroja
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los siguientes resultados para las eigenfrecuencias, recordando el cómo definimos las fre-
cuencias en el marco de referencia rotado:

ω̃± = ωref + ω̃′ = 1
2 [(ω1 + ω2) + (G1 − iλ1) + (G2 − iλ2)]

± 1
2
√

[∆ − (G1 − iλ1) + (G2 − iλ2)]2 + 4G1G2 (4.12)

Donde G1,2 = J1,2 − iΓ1,2. Con esto ya hemos hallado las frecuencias de ambos modos
para el caso general en donde hay disipación en el acoplamiento y en ambos péndulos.
La forma de proceder fue proponer una solución que dependía de las eigenfrecuencias.
De un modo similar podemos proponer una solución en el marco de referencia rotado
donde la amplitud y la fase dependan explícitamente del tiempo, pero con una evolución
temporal lenta que permita usar el método de promediado [26]. De tal modo que ϕ1,2 =
A1,2(t)cos[ωref t + θ1,2(t)]. Pasando al marco rotado, podemos reescribir las ecuaciones
de movimiento en términos de la frecuencia de referencia y un término perturbativo:

ϕ1,2 + ω2
refϕ1,2 + h1,2 = 0 (4.13)

Donde:

h1,2 = 2λ1,2ϕ̇1,2 + (ω2
1,2 − ω2

ref )ϕ1,2 − 2J1,2ω1,2(ϕ2,1 − ϕ1,2) − 2Γ1,2(ϕ̇1,2 − ϕ̇2,1) (4.14)

Debido a la dependencia de h1,2, puede ser tratado como un término perturbativo. Por lo
tanto, el método de promediado puede ser usado para eliminar las oscilaciones rápidas y
así observar el comportamiento cualitativo de A1,2(t) y de θ1,2(t) mediante las siguientes
relaciones:

dA1,2

dt
= ⟨h1,2 sin τ⟩

dθ1,2

dt
= ⟨h1,2 cos τ⟩

Donde el promedio está siendo calculado sobre un periodo T = 2π/ωref y τ = ωref t +
θ1,2. Como lo dijimos, A1,2(t) y θ1,2(t) varían lentamente con respecto al tiempo, por lo
que podemos considerar que ambas cantidades son aproximadamente constantes en un
período. Sustituyendo nuestra función propuesta y su derivada en el término perturbativo
h1,2 y considerando que varían lentamente, podemos evaluar fácilmente el promedio, ya
que los términos involucrarán senos y cosenos, de los cuales es útil recordar que ⟨sin2 τ⟩ =
1/2 y ⟨sin τ cos τ⟩ = 0.

⟨2λ1ϕ̇1 sin τ⟩ = −λ1A1 (4.15)

Ya que el promedio sobre un período de sen2(τ) es 1/2. Para el segundo término tenemos:
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⟨(ω2
1 − ω2

ref )ϕ1 sin τ⟩ = (ω2
1 − ω2

ref )A1⟨sin τ cos τ⟩ = 0 (4.16)

Ya que el promedio de sin τ cos τ es cero sobre un periodo. Para el tercer término tenemos:

⟨2J1ω1(ϕ2 − ϕ1) sin (ωref t + θ1)⟩ = 2J1ω1 [A2⟨cos (ωref t + θ2) sin (ωref t + θ1)⟩−
A1⟨cos (ωref t + θ1) sin (ωref t + θ1)⟩

Donde el segundo término es cero, debido a que el argumento en ambas funciones es
igual y como ya vimos, el promedio de sin τ cos τ es cero. Para el primero, notemos que
los argumentos difieren por una fase, entonces, al hacer la integral lo que nos queda es lo
siguiente:

⟨2J1ω1(ϕ2 − ϕ1) sin (ωref t + θ1)⟩ = A2J1ω1 sin (θ1 − θ2)
ωref

(4.17)

Finalmente, para el cuarto término sucede algo similar:

⟨2Γ1(ϕ̇2 − ϕ̇1) sin τ⟩ = Γ1A1 − A2Γ1 cos (θ1 − θ2) (4.18)

De modo que al juntar todos estos términos obtenemos lo siguiente:

dA1

dt
= −(λ1 + Γ1)A1 − A2J1ω1 sin (θ1 − θ2)

ωref

+ A2Γ1 cos (θ1 − θ2) (4.19)

Como mencionamos, el mismo procedimiento se realiza para A2:

dA2

dt
= −(λ2 + Γ2)A2 − A1J2ω2 sin (θ1 − θ2)

ωref

+ A1Γ2 cos (θ1 − θ2) (4.20)

Acorde a lo obtenido en [3, 4]. Ahora, para el caso de θ1,2 hacemos un proceso de prome-
diado completamente análogo:

d(θ1 − θ2)
dt

= −∆ + J1ω1 − J2ω2

ωref

+ (A2
1ω2J2 − A2

2ω1J1) cos (θ1 − θ2)
A1A2ωref

−
(

A1Γ2

A2
+ A2Γ1

A1

)
sin (θ1 − θ2) (4.21)

Habiendo encontrado las frecuencias y el comportamiento aproximado del sistema me-
diante el método de promediado, ya podemos ver cómo se comportan los 3 casos análogos
al sistema de excitones-polaritones:

1. Caso sin ningún tipo de disipación.

2. Caso con disipación en cada péndulo.

3. Caso con acoplamiento disipativo.
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Figura 22: Esquema de dos péndulos acoplados mediante un resorte de constante k.

4.1. Caso 1

Consideremos un sistema de dos péndulos acoplados mediante un resorte de constante k
sin ningún tipo de disipación. Como el que se ilustra en la figura 22. Cuyo lagrangiano
es:

L = 1
2ml2

1ϕ̇2
1 + 1

2ml2
2ϕ̇2

2 − 1
2mgl1ϕ

2
1 − 1

2mgl2ϕ
2
2 − 1

2kl2(ϕ1 − ϕ2)2 (4.22)

Al calcular las derivadas, las ecuaciones que obtenemos, son:

ml2
1,2ϕ̈1,2 + mgl1,2ϕ1,2 + kl2(ϕ1,2 − ϕ2,1) = 0 (4.23)

La cual podemos reescribir de una manera más familiar:

ϕ̈1,2 + ω2
1,2ϕ1,2 − 2J1,2ω1(ϕ2,1 − ϕ1,2) = 0 (4.24)

Con ω1,2 =
√

g/l1,2 son las frecuencias naturales de cada oscilador. Por otro lado J1,2 =
kl2/(2mω1,2l

2
1,2) son las constantes de acoplamiento. Comparando esto con la expresión

4.12, pero con λ1,2 = Γ1,2 = 0. Por lo que al sustituir esto en la expresión de las eigenfre-
cuencias, tenemos lo siguiente:

ω̃± = 1
2

[
(ω1 + ω2) + J1 + J2 ±

√
[ω2 − ω1 − J1 + J2]2 + 4J1J2

]
(4.25)

La influencia del acoplamiento es más notable cerca del punto de desintonización cero:
∆ = ω2 − ω1 ≈ 0, en tal caso, las frecuencias son aproximadamente iguales, y por cómo
está definida la fuerza de acoplamiento, tenemos que para este caso: J = J1 ≈ J2. Con
estas consideraciones, las eigenfrecuencias se pueden escribir de la siguiente forma:
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ω̃± − ω1 = 1
2
[
∆ + 2J ±

√
∆2 + 4J2

]
(4.26)

Esto lo podemos ver en la figura 23(a). Lo primero que notamos es el cruce evitado de
ambos modos, característico de un acoplamiento coherente, además, dado que existe una
separación significativa entre las frecuencias de los osciladores desacoplados y las eigen-
frecuencias de ambos modos, decimos que los péndulos están fuertemente hibridizados.
Esta hibridación es lo que produce el cruce evitado entre ambas ramas, ω̃+ y ω̃−. La sepa-
ración que existe entre ambos modos en ∆ = 0, la brecha tipo Rabi [27], es proporcional
a la fuerza de acoplamiento, ya que:

ω̃+(∆ = 0) − ω̃−(∆ = 0) = 2J (4.27)

El que ambos modos se comporten de manera coherente, puede ser identificado fácilmente
en el punto ∆ = 0 ya que ahí se cumple que: ω̃−(∆ = 0) = ω1 y por la brecha ω̃+(∆ =
0) = 2J + ω1. La primera de éstas condiciones establece una oscilación en fase de ambos
osciladores, por otro lado, la rama superior corresponde a una oscilación fuera de fase
con una diferencia de 180◦. Evidentemente, este caso de los osciladores acoplados es
completamente extrapolable al caso coherente de excitones-polaritones, con la diferencia
de que en ese caso, la energía de ambos modos jamás se cruzaba con la de los sistemas
desacoplados, lo que podríamos pensar como una ausencia de oscilación en fase, ambos
modos corresponden a oscilaciones fuera de fase. También es importante notar que en
este caso, no existe ninguna señal de degeneración entre ambos modos, ésta es eliminada
mediante el acoplamiento de ambos péndulos, aún más, el grado de no degeneración es
directamente proporcional a la fuerza de acoplamiento, ya que en ∆ = 0 la separación de
ambos modos es 2J [3]. Una vez más, es lo mismo que aparecía en el sistema excitón-
polaritón, ya que ahí, la fuerza de acoplamiento Ω era directamente proporcional a la
separación de ambos modos, y como veremos en la siguiente sección, para que estemos
en el régimen de acoplamiento fuerte, esta constante debe ser mayor que las pérdidas que
tenga el sistema con sus alrededores.

Como mencionamos al inicio de ésta sección, el acoplamiento entre los péndulos, trae
consigo un intercambio de energía que puede tener pérdidas o no, dependiendo de la
configuración del sistema. Dado que en este caso no existe ninguna disipación esperamos
que el intercambio sea de manera totalmente recíproca. Esto lo podemos ver mediante la
aproximación que hicimos al inicio de esta sección mediante el método de promediado.
Donde ϕ1,2 = A1,2 cos (ωref t + θ1,2). Cerca de ∆ ≈ 0 y para J ≪ ω1,2, las ecuaciones a
las que habíamos llegado se convierten en:

dA1,2

dt
= A2,1J sin (θ2,1 − θ1,2) (4.28)

d(θ1 − θ2)
dt

= −∆ + (A2
1 − A2

2)J cos (θ1 − θ2)
2A1A2

(4.29)

Para visualizar la dinámica de ambos osciladores acoplados, nos fijamos en el caso es-
tacionario con ∆ = 0, lo que nos lleva a la condición de que d(θ1 − θ2)/dt = 0 pero
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(a)

(b)

(c)

Figura 23: (a) Frecuencias de ambos modos como función de la desintonización, en ana-
ranjado se muestran las frecuencias de los osciladores desacoplados. En (b) y (c) se mues-
tran las oscilaciones de cada oscilador para ∆ ≈ 0 y tomando J/ω1 = 0.03.
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no necesariamente dθ1,2/dt = 0, bajo ésta consideración existen dos opciones para la se-
gunda ecuación: (A2

1 − A2
2) = 0 o cos(θ1 − θ2) =, la primera opción corresponde a una

oscilación en fase o fuera de fase por 180◦, A1 = A2 y A1 = −A2, respectivamente. La
segunda opción corresponde a θ1 − θ2 = (2n − 1)/π lo cual corresponde a una oscila-
ción fuera de fase por 90◦, ésta es la opción que tomaremos, dado que nos proporciona
un mejor entendimiento del acoplamiento [3]. Con esto, tenemos dos ecuaciones para la
amplitud:

dA1

dt
= A2J sin (π/2) = A2J

dA2

dt
= A1J sin (−π/2) = −A1J

Cuyas soluciones son:

A1 = ϕ0 cos (Jt)
A2 = ϕ0 sin (Jt)

Donde hemos tomado como condiciones iniciales: ϕ1(t = 0) = ϕ2(t = 0) = ϕ0, debido
a que estamos en el régimen de ∆ = 0 entonces ω1 ≈ ω2. También, tomando el valor
promedio de dθ1,2/dt podemos aproximar θ1,2 ≈ Jt de la expresión 4.21, entonces al
sustituir en la expresión encontramos que:

ϕ1 ≈ ϕ0 cos (Jt) cos [(ω1 + J)t] (4.30)

ϕ2 ≈ ϕ0 sin (Jt) sin [(ω1 + J)t] (4.31)

Esto se encuentra en las gráficas 23(b) y 23(c), las cuales exhiben un patrón de batido con
oscilaciones rápidas de frecuencia ω1 +J y una envolvente de frecuencia J tipo Rabi [27].
La frecuencia de la envolvente es, como se aprecia en las gráficas, lo que determina la
transeferencia de energía entre ambos osciladores, físicamente tiene sentido, ya que la
frecuencia de la envolvente es justo la constante de acoplamiento, y como dijimos antes,
el acoplamiento es lo que permite esa transferencia de energía entre ambos osciladores.
Además, en este caso donde la fase es de 90 grados, la conservación de la energía se
aprecia en las oscilaciones de cada péndulo.

Como conclusión de este caso, el acoplamiento coherente en este sistema nos da un mejor
entendimiento de lo que veíamos en los excitones-polaritones, dado que las últimas gráfi-
cas las podemos pensar de la siguiente forma: cuando no hay disipación, la conservacioón
de la energía entre los polaritones se manifiesta cuando un excitón decae a su estado base
y libera un fotón, o viceversa, cuando un fotón excita a un electrón, y debido a que no
hay pérdidas este proceso continuaría de una forma periódica así como en el caso clásico,
además, hemos visto el papel de la constante de acoplamiento, que allá llamamos Ω en la
separación de ambos modos y en la transferencia de energía.
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4.2. Caso 2

En esta sección, estudiaremos de nueva cuenta el sistema de dos osciladores acoplados, tal
y como se presenta en la figura 22, con la modificación de que introduciremos términos
disipativos a cada oscilador, tal vez debido al pivote o el medio en el que se encuentran,
sin embargo el acoplamiento sigue sin tener disipación. En principio, el lagrangiano de
la ecuación 4.22 es el mismo, con la modificación de que introducimos la disipación
mediante la función de disipación de Rayleigh [25]:

F = λ1ml2
1ϕ̇1 + λ2ml2

2ϕ̇2 (4.32)

Las ecuaciones se obtienen mediante:

d

dt

∂L

∂ϕ̇1,2
− ∂L

∂ϕ 1,2
+ ∂F

∂ϕ̇1,2
= 0 (4.33)

Obtenemos las siguientes ecuaciones:

ϕ̈1,2 + 2λ1,2ϕ̇1,2 + ω2
1,2ϕ1,2 − 2J1,2ω1(ϕ2,1 − ϕ1,2) = 0 (4.34)

Con las mismas identificaciones que en el caso anterior para ω1,2 y J1,2. Con esto y la
expresión 4.12 tenemos que los dos modos están dados por:

ω̃± = 1
2

[
(ω1 + ω2) − i(λ1 + λ2) + J1 + J2 ±

√
[ω2 − ω1 − i(λ2 − λ1) − J1 + J2]2 + 4J1J2

]
(4.35)

De nueva cuenta, trabajamos en ∆ ≈ 0 y por lo tanto J = J1 ≈ J2 e introduciendo la
definición de la desintonización tenemos:

ω̃± − ω1 = 1
2

[
∆ − i(λ1 + λ2) + 2J ±

√
[∆ − i(λ2 − λ1)]2 + 4J2

]
(4.36)

Con la fórmula ya usada antes 3.4, podemos encontrar la parte real e imaginaria:

ω± − ω1 = 1
2∆ + J

±1
2

√√√√√[∆ − (λ2 − λ1)2 + 4J2]2 + 4∆2(λ2 − λ1)2 + ∆2 − (λ2 − λ1)2 + 4J2

2

∆ω± = 1
2(λ2 + λ1)

±

√√√√√[∆ − (λ2 − λ1)2 + 4J2]2 + 4∆2(λ2 − λ1)2 − (∆2 − (λ2 − λ1)2 + 4J2)
2

Donde Re(ω̃±) = ωpm y −Im(ω̃±) = ∆ω± de modo que ω̃± = ω± − i∆ω±. Con esto,
podemos graficar los dos modos y su parte imaginaria. Esto se muestra en la figura 24,
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(a) (b)

(c) (d)

Figura 24: Frecuencias de ambos modos, parte real (lado derecho) y parte imaginaria (lado
izquierdo). Donde para (a) y (b) se tomó λ2 = 0.1 y para (c) y (d) λ2 = 1 y para ambos
casos se tomó que λ2 = 5λ1.

veoms que para valores pequeños de la disipación (acoplamiento fuerte), el comporta-
miento es bastante similar al caso anterior, con el mismo gap tipo Rabi y con las mismas
diferencias de fase en ∆ = 0, también aunque la disipación se incluya el sistema aún no
tiende a la degeneración. La hibridación de los dos modos también se ve reflejada en el
ancho de banda (parte imaginaria ∆ω±) ya que la evolución de ésta es atractiva, llegando
a coincidir para ∆ = 0. La información importante que nos da el ancho de banda es que
a valores grandes de la desintonización el comportamiento es asintótico, de hecho, para
todo valor de ∆ se cumple que ∆ω+ + ∆ω− = λ1 + λ2, esto lo que nos dice es que a
pesar de haber disipación el sistema sigue siendo cerrado [3], lo que sucede es que aunque
los osciladores intercambian energía, al no haber una disipación extra, nuestro sistema se
mantiene acotado por arriba y abajo por λ1,2. Esto también lo observábamos en el sistema
de polaritones del caso 2, ya que la parte imaginaria mostraba este mismo comportamien-
to en función de los valores γx y γc. Por otro lado, la gráfica 24(c) se muestra el caso
para un valor más grande de la disipación, lo que sucede es lo que ya habíamos visto en
el sistema cuántico: una disminución del gap, que ahora podemos darle la interpretación
de un cambio de fase entre los modos, en comparación al caso coherente. Ahora, lo que
queremos es ver de nuevo el comportamiento dinámico aproximado de cada oscilador, lo
haremos de la misma forma que en la sección anterior, con la diferencia de que al incluir
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la disipación nuestras ecuaciones se convierten en:

dA1,2

dt
= −λ1,2A1,2 + A2,1J sin (θ2,1 − θ1,2) (4.37)

d(θ1 − θ2)
dt

= −∆ + (A2
1 − A2

2)J cos (θ1 − θ2)
2A1A2

(4.38)

Bajo el mismo argumento de fijarnos en ∆ = 0 y en un caso estacionario en fase de 90◦

tenemos las siguientes ecuaciones para la amplitud:

dA1

dt
= −λ1A1 − A2J

dA2

dt
= −λ2A2 + A1J

Tomando las mismas condiciones iniciales, y asumiendo que ambos coeficientes de amor-
tiguamiento son aproximadamente iguales, podemos proponer soluciones de la forma:

A1 = ϕ0e
− (λ1+λ2)

2 t cos (Jt)

A2 = ϕ0e
− (λ1+λ2)

2 t sin (Jt)

Y usando de nuevo que θ1,2 ≈ Jt, tenemos:

ϕ1 = ϕ0e
− (λ1+λ2)

2 t cos (Jt) cos [(ω1 + J)t]

ϕ2 = ϕ0e
− (λ1+λ2)

2 t sin (Jt) sin [(ω1 + J)t]

Esto está en la figura 26, donde las oscilaciones también presentan un patrón de batido
al igual que en el caso anterior, con una envolvente que también depende de la fuerza de
acoplamiento, por lo que esto puede ser descrito por una frecuencia tipo Rabi, el cambio
más importante es que en este gráfico vemos el efecto de los términos disipativos en la
transferencia de energía, lo que podemos ver en cómo la envolvente decae exponencial-
mente. Este decaimiento, tal y como se ve en las ecuaciones, está directamente relacio-
nado con los coeficientes de amortiguamiento. Volviendo al sistema de polaritones, esto
que vemos en la figura 26 lo podemos pensar como en la transferencia de energía en el
sistema luz-materia y cómo la disipación debido a la configuración del sistema hace que
esta transferencia se vea afectada en la evolución temporal. Con este análisis, no solo
podemos entender mejor el papel de la disipación de energía en los polaritones, también
entendemos mejor la disminución de la brecha entre ambos modos y cómo el ancho de
banda está acotado por los valores de amortiguamiento.
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(a)

(b)

Figura 25: En (a) y (b) se muestran las oscilaciones de cada oscilador para ∆ ≈ 0, toman-
do J/ω1 = 0.03 y λ2/ω1 = 5λ1/ω1 = 0.005.

4.3. Caso 3

En este caso, queremos ver el comportamiento del sistema bajo la acción de un acopla-
miento disipativo, esto en el sistema de dos péndulos equivale a introducir algún mecanis-
mo que disipe energía en el acoplamiento, en lugar del resorte ideal con el que veníamos
trabajando. Pensemos en algún sistema hidráulico con algún fluido en su interior que haga
que el sistema disipe energía. Al igual que en el caso anterior, trabajamos con el lagran-
giano 4.22 añadiendo a la función de disipación de Rayleigh [25]:

F = λ1ml2
1ϕ̇2

1 + λ2ml2
2ϕ̇2

2 + νm(ϕ̇1 − ϕ̇2)2 (4.39)

Donde ν es la viscosidad del fluido que causa la disipación. Como en el sistema de la fi-
gura estamos considerando que el único medio de acoplamiento es el disipativo, tenemos
que J1 = J2 = 0, esto también nos proporcionará más información acerca de lo que di-
ferencia a ambos tipos de acoplamiento. Lo que obtenemos son las siguientes ecuaciones
de movimiento:

ϕ̈1,2 + 2λ1,2ϕ̇1,2 + ω2
1,2ϕ1,2 − 2Γ1,2(ϕ̇2,1 − ϕ̇1,2) = 0 (4.40)

Donde la fuerza de acoplamiento es Γ1,2 = ν/l2
1,2. Cerca del punto de desintonización

∆ = 0 tenemos Γ = Γ1 ≈ Γ2 y sustituyendo en la ecuación 4.12, tenemos las frecuencias
de ambos modos:

ω̃± = 1
2

[
(ω1 + ω2) − i(λ1 + λ2) − 2iΓ ±

√
[ω2 − ω1 − i(λ2 − λ1)]2 − 4Γ2

]
(4.41)

ω̃± − ω1 = 1
2

[
∆ − i(λ1 + λ2) − 2iΓ ±

√
[∆ − i(λ2 − λ1)]2 − 4Γ2

]
(4.42)
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Figura 26: Esquema de dos péndulos acoplados mediante un sistema hidráulico que pueda
disipar energía.

Podemos volver a aplicar 3.4 y obtener la parte real e imaginaria, considerando que ω̃± =
ω± − i∆ω±. Obtenemos lo siguiente:

ω± − ω1 = 1
2∆

±1
2

√√√√√[∆ − (λ2 − λ1)2 − 4Γ2]2 + 4∆2(λ2 − λ1)2 + ∆2 − (λ2 − λ1)2 − 4Γ2

2

∆ω± = 1
2(λ2 + λ1) + Γ

±1
2

√√√√√[∆ − (λ2 − λ1)2 − 4Γ2]2 + 4∆2(λ2 − λ1)2 − (∆2 − (λ2 − λ1)2 − 4Γ2)
2

Las gráficas de las frecuencias y el ancho de banda para ambos modos se muestran en la
figura 27. A diferencia del acoplamiento coherente, donde ambos modos se repelen, en
este caso observamos una atracción de ambos modos para cierto rango de la desintoniza-
ción, tal y como se ilustra en las gráficas 27(a), 27(c) y 27(e). Tal fenómeno se conoce
como atracción de niveles, y es característico del acoplamiento disipativo [3, 4, 2, 22]. A
consecuencia, esto ya no puede ser caracterizado por medio de un gap tipo Rabi, ahora la
atracción de niveles es entendida por medio de dos puntos en donde las eigenfrecuencias
tienden a ser degeneradas, a esto se le conoce como puntos excepcionales, en analogía
al caso coherente, la separación entre los puntos excepcionales está caracterizada por la
fuerza de acoplamiento Γ. Los puntos excepcionales se originan debido a la estructura
topológica de las eigenfrecuencias complejas [3]. La repulsión de niveles también se ma-
nifiesta en el ancho de banda, ya que a diferencia del caso coherente aquí observamos una
repulsión en el amortiguamiento. Esto caracterizado por los parámetros Γ + λ1 y Γ + λ2.
Si nos centramos en las gráficas 27(a) y 27(b), vemos que para |∆| > 2Γ los modos tienen
frecuencias diferentes pero mismo amortiguamiento, y todo lo contrario para |∆| < 2Γ.
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En el sistema de excitones-polaritones, específicamente en el caso 1 vimos que en la fi-
gura 7, la atracción de niveles se manifestaba en esa tendencia de los modos a formar un
“cuello de botella.entre ambas ramas, así como en la parte imaginaria la repulsión entre las
ramas confirma la atracción de niveles, sin embargo, algo no se explicó en la figura 7(a),
ya que aunque el “cuello de botella"se asemeja al comportamiento presentado en la figu-
ra 27, por qué persiste la brecha entre ambos modos y no la degeneración del caso clásico.
La respuesta es que en el caso clásico sólo tomamos en cuenta el acoplamiento disipativo
sin el coherente (el acoplamiento del resorte), pero en los excitones-polaritones además
del acoplamiento disipativo también está presente el acoplamiento coherente, por lo tanto,
la brecha entre ambos modos queda descrita por ambas constantes de acoplamiento, ΩR

y Ωim, en conlusión, no vemos la degeneración del sistema en la gráfica 7(a) por la pre-
sencia de ΩR. Lo que sí vemos es que la tendencia a formar el cuello de botella es justo la
aparición de los puntos excepcionales, cuya brecha depende directamente de la constante
de acoplamiento disipativo Ωim que es el parámetro que variamos para graficar.

Para ver el comportamiento dinámico de estos sistemas, de nueva cuenta recurrimos al
método de promediado, cuyas ecuaciones antes establecidas, se transforman para nuestro
caso en:

dA1,2

dt
= −(λ1,2 + Γ)A1,2 + A2,1Γ cos (θ1 − θ2)

d(θ1 − θ2)
dt

= −∆ −
(

A1Γ
A2

+ A2Γ
A1

)
sin (θ1 − θ2)

De acuerdo a estas ecuaciones, para el caso estacionario con ∆ = 0 la diferencia de
fase entre los péndulos es 0◦ o 180◦ lo cual hace que la expresión para la amplitud se
simplifique bastante:

dA1

dt
= −(λ1 + Γ)A1 + A2Γ

dA2

dt
= −(λ2 + Γ)A2 + A1Γ

La cual podemos resolver si la escribimos en forma matricial y encontramos los eigenva-
lores por medio de su ecuación característica:(

Ȧ1
Ȧ2

)
=
(

−λ1 + Γ Γ
Γ −λ2 + Γ

)(
A1
A2

)
(4.43)

Lo cual arroja los siguientes valores:

γ± =
2Γ − (λ1 + λ2) ±

√
(λ1 − λ2)2 + 4Γ2

2 ≈ −λ1 + λ2

2 + Γ(1 ± 1) (4.44)
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(a) (b)

(c) (d)

(e) (f)

Figura 27: Frecuencias de ambos modos azul para el modo inferior ω− y rojo para el
superior ω+, parte real (lado derecho) y parte imaginaria (lado izquierdo). Donde para
(a) y (b) se tomó ∆λ = λ2 − λ1 = 0, para (c) y (d) ∆λ = 0.05Γ y para (e) y (f)
∆λ = 0.5Γ además, para todas las gráficas λ1 = 0.02Γ. En (a), (c) y (e) las líneas
punteadas representan las frecuencias de los osciladores desacoplados. En (b), (d) y (f)
las líneas negras punteadas, corresponden a Γ + λ1 y Γ + λ2.
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Donde hemos usado el hecho de que λ1,2 es muy pequeño y que al estar en acoplamiento
fuerte Γ2/λ1λ2 ≫ 1. Tomando las condiciones iniciales ϕ1(t = 0) = ϕ0 y ϕ2(t = 0) = 0:

A1 = ϕ0e
− λ1+λ2

2 t(1 + e−2Γt)/2

A2 = ϕ0e
− λ1+λ2

2 t(1 − e−2Γt)/2

Como estamos en ∆ = 0, las soluciones aproximadas son:

ϕ1 = ϕ0

2 e− λ1+λ2
2 t(1 + e−2Γt) cos (ω1t) (4.45)

ϕ2 = ϕ0

2 e− λ1+λ2
2 t(1 − e−2Γt) cos (ω1t) (4.46)

Estas funciones se muestran en la figura 28. Al igual que en el caso 2 los parámetros
λ1,2 contribuyen con un decaimiento exponencial, pero además, en este caso tenemos una
nueva fuente de disipación debida al acoplamiento, como asumimos Γ ≫ λ1,2 el decai-
miento debido al acoplamiento supera a las pérdidas de cada sistema por separado. Esto
tiene como consecuencia un decaimiento rápido en ϕ1 y un incremento abrupto en ϕ2,
lo cual se muestra en la figura 28. Lo más destacable es que al incluir el acoplamiento
disipativo, el decaimiento rápido hace que ambos péndulos entren en un estado de sincro-
nización, teniendo una misma ampiltud y fase, a diferencia del acoplamiento coherente,
donde no se observa ninguna tendencia hacía la sincronización [3, 4]. La sincronización
es un fenómeno presente en la dinámica de sistemas físicos, químicos y biológicos [7];
lo que acabamos de ver es cómo puede ser inducida mediante el acoplamiento disipati-
vo, esto se puede entender con el siguiente ejemplo: si tenemos dos metrónomos puestos
sobre una misma superficie, en principio con diferente frecuencia, la superficie actuará
como una reserva común de disipación para ambos sistemas, por lo que al dejar correr
un tiempo suficientemente grande, ambos metrónomos, debido a la reserva compartida
entrerán en sincronización. En el sistema de polaritones esto puede ser extrapolado al ba-
ño compartido por ambas partes, es decir, debido al acoplamiento disipativo, se induce la
sincronización en el sistema.
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(a)

(b)

Figura 28: En (a) y (b) se muestran las oscilaciones de cada oscilador para ∆ ≈ 0, to-
mando Γ/ω1 = 0.03 y λ2/ω1 = 5λ1/ω1 = 0.005, esto para estar dentro del rango de
acoplamiento fuerte.

5. Conclusiones

A lo largo de este trabajo, vimos que la inclusión del acoplamiento disipativo provee un
mejor entendimiento de los polaritones expuestos a fuentes de disipación. Principalmen-
te, el acoplamiento disipativo tiene implicaciones importantes en el sistema: aparición de
masa negativa debido a la relación de dispersión anómala, atracción de niveles entre am-
bos modos, los puntos excepcionales que hacen al sistema tender a la degeneración y la
sincronización que extrapolamos del análisis del caso clásico. Del mismo modo, el análi-
sis del caso clásico nos da una mejor interpretación acerca de fenómenos peculiares en el
sistema cuántico: cambio en la brecha entre los modos y la masa efectiva, interpretación
de la masa efectiva cero, el gap tipo Rabi que aparece en el caso coherente y la evolu-
ción dinámica de ambos osciladores dependiente de la fuerza de acoplamiento. El trabajo
futuro consiste en una aproximación al acoplamiento disipativo mediante la teoría input-
output y plantear las ecuaciones relevantes que son dependientes del tiempo [28, 29]. Así
como entender mejor qué significa que haya sincronización en un sistema cuántico, que
no es tan intuitivo como en el sistema clásico.
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