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RESUMEN

Resumen

Los excitones-polaritones son estados de cuasiparticulas que resultan del acoplamiento
fuerte entre luz y materia, dando lugar a estados cudnticos hibridos que heredan las ca-
racteristicas de ambas partes, como la ligera masa efectiva de su parte foténica y las in-
teracciones coulombianas repulsivas de su parte exciténica. Tales caracteristicas pueden
ser aprovechadas para la creacién de estados macroscépicos como condensados, super-
fluidos o los llamados fluidos cudnticos de luz. De modo que un mejor entendimiento
de los excitones-polaritones es deseable para el desarrollo de los ya mencionados es-
tados macroscOpicos y nuevas tecnologias. Debido a la configuracion del sistema, los
excitones-polaritones son un sistema que puede interactuar con sus alrededores por me-
dio de términos disipativos, en este trabajo se estudia como la disipacidn, principalmente
en el acoplamiento, modifica las propiedades del sistema. Ademads, para una mejor com-
prension fenomenoldgica del sistema, estudiaremos el caso de dos osciladores cldsicos
acoplados, con diferentes fuentes de disipacion.

Palabras clave: Acoplamiento coherente, acoplamiento disipativo, masa efectiva negati-
va, atraccion de niveles, repulsion de niveles, puntos excepcionales.
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1 INTRODUCCION

1. Introduccion

Normalmente, el paradigma de un buen experimento en fisica, es aquel en el que se pue-
da aislar al sistema de interés lo mayor posible de todas las fuentes de ruido que puedan
alterarlo, y por lo tanto, supondrian un obstaculo en el descubrimiento de las propiedades
intrinsecas del sistema en cuestion. Este proceder ha llevado a la idealizacion de sistemas
completamente aislados, es decir, siempre apuntar a eliminar todo rastro de variables ex-
ternas que modifiquen nuestro sistema y supongan una dificultad a la hora de descubrir
la verdadera naturaleza del mismo. Sin embargo, esta imagen contrasta con el estudio de
sistemas cudnticos, donde las interacciones con su entorno forman parte fundamental de
las propiedades que exhiben [1, 2].

La posibilidad de que existan interacciones efectivas entre fotones lo suficientemente fre-
cuentes para generar efectos colectivos, es una idea que atrajo la atencion de los fisicos
durante los ultimos afios. Para lograr esto, una de las configuraciones que mas ha sido
estudiada es aquella donde luz y materia estdn acoplados fuertemente, lo que quiere decir
que la energia de interaccion es mayor que la pérdida de energia en el sistema [3} 4]. Este
acoplamiento da lugar a una cuasiparticula llamada polariton [, 6]. Esto se obtiene a tra-
vés de microcavidades Opticas, las cuales son resonadores 6pticos que se encuentran en el
orden de la longitud de onda de la luz, dentro se encuentra una capa delgada de un semi-
conductor [3]. Al confinar a la luz dentro de la cavidad por se aumentan las posibilidades
de lograr el acoplamiento luz-materia. Un esquema de una microcavidad se presenta en la

Figura[I(a)l

En este trabajo, se estudiard un sistema de excitones-polaritones con términos disipati-
vos, tanto en el sistema no interactuante como en el acoplamiento. Como mencionamos,
el estudio de un sistema cudntico que interactda con sus alrededores ya posee un interés
en si mismo. Ademads, el acoplamiento disipativo supone aplicaciones interesantes como
controlar la direccién de propagacion mediante ingenieria en la disipacion [7] o conectar
osciladores separados mediante interacciones disipativas no locales [8]. Esto se ha carac-
terizado en sistemas cudnticos como magnones [8] y mas recientemente en polaritones [9]].

1.1. Excitones-polaritones

Los semiconductores son materiales que pueden ser caracterizados mediante el modelo
de bandas. En este modelo existen dos bandas de energia permitidas, la de valencia y la
de conduccién. Dichas bandas estdn separadas por una zona no permitida determinada
por una brecha o gap de energia. Con este modelo, los semiconductores son aquellos
materiales cuya banda de valencia estd casi llena y la de conduccién vacia [6]. Se les
llama semiconductores debido a que bajo ciertas condiciones pueden comportarse como
aislantes o conductores, por ejemplo: la temperatura a la que se encuentren, el campo
eléctrico o magnético al que estén sometidos [[10].

Para que un electrén en la banda de valencia pase a la de conduccidn, se le debe dar una
energfa igual o mayor a la brecha, como se ilustra en la Figura[I(b)] lo cual puede lograrse
mediante un haz de luz que excite a los electrones. Cuando esto pasa, el electron excitado
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1.1 Excitones-polaritones 1 INTRODUCCION

Banda de conduccion.

| E, Brecha de energia.
ks ! oy
0 \ Bt )

4 Banda de valencia.

Bragg mirror
Brag§ ‘mirror

Figura 1: (a) Esquema de una microcavidad tomado de la Ref. [5]. Esquemas del modelo
de bandas que describe la creacion de los excitones y la interaccion luz-materia en los
excitones-polaritones, (b) y (c), respectivamente.

deja tras de si un hueco con carga neta positiva formando un par ligado electrén-hueco,
dando lugar a lo que se conoce como excitén [11}12]].

La interaccion entre el electrén en la banda de conduccién y el hueco en la de valencia, es
de tipo coulombiana, por lo tanto el exciton puede verse como una particula tipo 4tomo
de hidrégeno. Con esto en cuenta, podemos escribir el Hamiltoniano del excitén como:

S A

H., = - -
ch 2me  2my,  47me |re — 1y

Donde p, y p;, son los momentos del electron y el hueco, respectivamente. Por tratarse
de un sistema andlogo al 4&tomo de hidrégeno, lo resolvemos de manera usual, definimos
la coordenada del centro de masa R y la coordenada relativa r. Con esto construimos un
Hamiltoniano que es separable ante estas dos coordenadas:

P2 p2 62

oM o dap

ﬁeh = ﬁl(Pv R) + ﬁ2<p7r)

Con M = m. + my, y i+ la masa reducida. Dada esta forma del hamiltoniano, los niveles
de energia son:
P° R,

2M  n?
Donde R, = €*/(2¢cap.), ap. es el radio de Bohr y € es la permitividad eléctrica del
material, por lo que es un modelo mesoscépico. En efecto, los niveles de energia son

E,=E,+
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2 POLARITONES EN ACOPLAMIENTO COHERENTE

iguales a los del dtomo de hidrégeno, sin embargo, al tomar un exciton en el estado base
y considerando que el momento del centro de masa es cero, la energia puede aproximarse
a:

2

2my

(1.1)

ef=cpteftel =6+

donde m,, es la masa del exciton. También se ha usado i = 1.

Cuando el electrén de la banda de valencia pasa a la de conduccién, por lo general, en
el contexto de los semiconductores, el electron caerda de nueva cuenta al estado de mi-
nima energia, absorbiendo un fotén. Dentro de una cavidad como la de la figura[l(a)| el
acoplamiento fuerte entre luz y materia da lugar al exciton-polariton [6], un pequefio es-
quema descriptivo se muestra en la Figura Dentro de la cavidad, la energia del fotén
confinado estd dada por [[13]:

. he
e = ni’/kﬁiji (1.2)

Donde £ es la constante de Planck, c es la velocidad de la luz, k; = 27n./\. es el nimero
de onda en la direccion de confinamiento, n.. s el indice de refraccion del medio dentro de
la cavidad, ). la longitud de onda del modo confinado y k| = n.2m /). tansin™* (sinf/n,)
270/ A es el nimero de onda en la direccién paralela a los espejos con € el dngulo de in-
cidencia, tal como se ve en la Figura Si asumimos k| < k; podemos hacer un
desarrollo en serie:

7712k:ﬁ
ex R g+ 1.3
e (1.3)
donde e = €°(kj = 0) = hck,/n. es la energia a momento cero, ademds el fotén
adquiere una masa efectiva por estar confinado, ésta es m. = n2e“(k; = 0)/c% Por lo

tanto, si trabajamos en unidades naturales, y ademds hacemos k| = K, tendremos que la
energia de un fotén confinado en la microcavidad, en términos de la masa efectiva que
adquiere, es:

k2

C =gl 1.4
€k 50+2mc (1.4)

2. Polaritones en acoplamiento coherente

Habiendo presentado qué es un polaritén, podemos escribir el hamiltoniano que describe
el acoplamiento coherente entre luz y materia dentro de la cavidad como:

B=Y & 4] [?5 ;j [ﬁj .1

k
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2 POLARITONES EN ACOPLAMIENTO COHERENTE

El cual podemos desarrollar para identificar cada término:

H =Y [epafan + egefen + Qe + efan)] (2.2)
K

Donde ¢y, y €, representan la energia de un exciton y un foton con momento Kk, respectiva-
mente, de acuerdo a las ecuaciones y Ademas, 50;2, Tk, é]t y ¢k son los operadores de
creacion y aniquilacion de la parte exciténica y fotonica, en ese orden. Con estos operado-
res obtenemos el operador nimero para la parte excitonica fcltik = n el cual representa el
nimero de excitones en el estado 14 con momento k, de igual forma para la parte foténica
tenemos que élék es el nimero de fotones con momento K; por lo tanto, el nimero total
de excitones y fotones de nuestro sistema es ﬂ(:ﬁk o élték, respectivamente.

Con estas definiciones y de acuerdo a la segunda cuantizacién [14}[15]], los primeros dos
términos de la ecuacién [2.2] corresponden a la energia de la parte exciténica y fotdnica.
Por otro lado, €2 nos da la frecuencia de acoplamiento entre el fotén y el exciton, que en
este caso es real. El término cruzado flék nos dice que se anade un exciton pero se extrae
un fotén, mientras que el término éltfk quita un exciton y afiade un fotén. En resumen, el
tercer término de [2.2]representa el acoplamiento entre luz y materia [12].

El hamiltoniano de la ecuacién 2.1 puede ser diagonalizado mediante la siguiente trans-

formacion:
Tx Cv Skl [Lx
Kl = N 2.

La cual nos define los operadores que crean a los polaritones inferiores (lower polariton)
y los superiores (upper polariton), ZA},T( y Uli respectivamente. Donde Cy y Sk, se conocen
como los coeficientes de Hopfield [11], los cuales nos dan la fraccién de luz y materia que
existe en nuestro sistema. Los coeficientes estdn normalizados debido a que si queremos
la fraccion de luz y materia, y ademds no hay ninguna disipacion, la suma de ambos debe
dar uno.

02*1 1+L
\JOF + 402

Por lo que nos gustaria escribir nuestro hamiltoniano en términos de los operadores L,T( y
UII y las eigenenergias de cada operador. Partimos de la transformacion [2.3|para encontrar
las siguientes igualdades entre operadores:

y Sf=1-C} 2.4)

Zx = CiLy + SkUx
= C L + SO
&k = —SiLi + Ci Uk
ol = —SkLi + U

6 PROYECTO TERMINAL I



2 POLARITONES EN ACOPLAMIENTO COHERENTE

Sustituimos esto en el Hamiltoniano de [2.2| para cada término, obteniendo lo siguiente:

6?)@1@} = €i (Okf/;r{ + SkUlJ([) (Ckfzk + SkUk) (2 5)
= ef (CRLLL + SkCi (LLTh + Ul Li) + SEUL Uk '
eceley = ef (—Squt + CkUII) (_Skf/k + CkUk)

L N NS (2.6)
= i (StLiLi+ CRUT — SiCic (LD + Ui L))

Ahora seguimos con los términos cruzados del hamiltoniano:

ifew = (GLf + SklY) (= Sila + Cilh) o)

= GRLLUk — SRUL L + CicSic (Ul Uk — LiLx)
61];@]( = (—Skf/;r( + Ckﬁl;r) (Ckfzk + SkUk) (2 8)
= GRUL L — SLLO + SiCic (UL Uk — LiLx) '

Como ya tenemos todos los términos que aparecen en nuestro Hamiltoniano puestos como
funcién de los nuevos operadores, reescribimos la expresion recordando la definicién de
Sk en términos de Cy y agrupando términos semejantes obtenemos lo siguiente:

epblix + eflln + QLA+ eldn) =
N (g;gqf +ee(1— C2) — 2000 /1 — Cg) + OO, <g§(1 SR 4 502 + 20001 — qz)
HELD+ 01 (2 - £)Ci/1 - G2+ 0(20E - 1)

eLiid + efetn + Qale + eld) =
i (g;'gqf 0O 428 — 2001 — qz) + OO, (gﬁqf SO 4 e 1 200k/1 - qz)
(L0 + Of 1) (Ck\/l TOR(eE — £0) + Q202 — 1)) _
I (—&Cﬁ 4t — 2001 — 0,3) + 010, (5.@,3 bl 42001 — q%)

+(L{U + Uy Ly) (Ck\/ 1 — C2o + Q(2CE — 1))

Dada la dltima expresion, sustituimos explicitamente a los coefiecientes de Hopfield. Des-
pués de simplificar un poco llegamos a la expresion deseada:

7 PROYECTO TERMINAL I



2 POLARITONES EN ACOPLAMIENTO COHERENTE

el 4 epelen + Qaten + i) =

N | NP |
L,T(Lk5 (aﬁ +ep — \/OF +4Q2> + UIIUk§ <a,i + ep + 1/ 0k +4Q2>

Dentro de los paréntesis encontramos a los eigenvalores que diagonalizan al Hamiltoniano
con los correspondientes operadores para los polaritones superiores Uy e inferiores Ly:

1
VPP = (5k ot 4+ J02 4+ 4(22) 2.9)

Donde dx = ef, — €} es la desintonizacién, para k = ( tenemos que: § = 5 — € donde se
toma, por conveniencia €; = 0. De tal forma que podemos reescribir el Hamiltoniano en
forma diagonal:

- i ol |57 O] Z s i+ ofonerr 2.10
_Z|: K Uk} 0 El((jp Uk —Z kLK€K + k VkEk ( . )
K K

El espectro de energfa de los polaritones se muestra en la Figura [2] donde la gréfica co-
mo funcién de la desintonizacién [2(a)| nos proporciona informacién acerca de qué parte
de la energia domina, si la material o la foténica; por ejemplo, para los polaritones in-
feriores conforme § crece vemos que la energia se aproxima asintéticamente a la de la
parte material, y cuando § es negativo la energia tiende a aproximarse a la parte fotoni-
ca. Lo importante es notar que en ésta grifica la energia de los polaritones siempre se
aproxima asintéticamente a la de la parte fotdnica y exciténica, nunca cruza estas cotas,
exhibiendo una clara repulsién de niveles entre ambos modos, propio del acoplamiento
coherente [3} 4, [16]. Del mismo modo, en la Figura vemos que la dispersion de los
polaritones con respecto al momento también se aproxima de manera asintética a las ener-
gias de los excitones y fotones por si solos, ademads, el aspecto de la relacién de dispersion
es casi parabdlico, de modo que para el caso coherente no encontramos una dispersion que
sea evidentemente anémala [17]].

De manera similar, en la grafica de la energia con respecto al momento, vemos una re-
pulsién de niveles, es importante notar que en esta grafica estamos haciendo a la desinto-
nizacion cero, es decir, cuando la diferencia de la energia a momento cero entre la parte
foténica y excitdnica es cero. Por lo tanto, lo que se ve en este caso es en el momento de
madxima interaccion luz-materia.

En la figura 3| podemos ver como se comportan los coeficientes de Hopfield vemos que
cuando 6 > 0 la parte foténica domina frente a la material y cuando 6 < 0 todo lo
contrario. Esto en concordancia a lo que observamos en la grafica de la energia en funcién
de la desintonizacidn, ya que dependiendo del intervalo donde se encuentre el valor de §
la energia se aproxima mads a la parte material o foténica, segin sea el caso. Mds adelante
esto cobrard relevancia en las masas efectivas y en el caso disipativo.

8 PROYECTO TERMINAL I



2 POLARITONES EN ACOPLAMIENTO COHERENTE

1.5

1.0

0.5_//

0.0

~0.5 //_

-1.0

E/20

-1.5
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

5/20

(a) Energia como funcién de la desintonizacién.

2.0

1.5

1.0

E/20

0.5

0.0y ——= —

o T~

-4 -2 0 2 1
K2/ dm 0

(b) Energia como funcién del momento.

Figura 2: Espectro de energia de los exitones-polaritones. En rojo los polaritones superio-
res y en azul los polaritones inferiores, ademds, se muestra en naranja la energia de los
excitones y fotones por separado. Donde se ha tomado la masa efectiva del fotén como
m. = 10~%m,.
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2.1 Masa efectiva 2 POLARITONES EN ACOPLAMIENTO COHERENTE

=4 ) 0 2 4
§/20Q

Figura 3: Coeficientes de Hopfield en funcién de la desintonizacion.

2.1. Masa efectiva

En el caso puramente cldsico, la primera definicién de masa la encontramos en la segunda
ley de Newton F = ma, de modo que la idea de una masa dependiente de las interacciones
con sus alrededores no parece tan evidente. En fisica del estado sélido la idea de masa
efectiva fue introducida para estudiar el movimiento de electrones dentro de potenciales
periddicos en redes cristalinas [10]. En consecuencia, el concepto de masa efectiva nos
proporciona una manera de entender el comportamiento de cuasiparticulas que interactian
con sus alrededores de manera significativa. Recordemos que la relacion de dispersion es
la energia del sistema en funcién del momento. La masa efectiva estara relacionada con la
curvatura de la relacion de dispersion, por lo tanto, en aquellos sistemas donde aparezca
una relacion de dispersion andmala (no parabdlica) la masa efectiva dependerd de los
parametros relevantes del sistema [18]].

Como dijimos, la masa efectiva estd relacionada con la relacién de dispersién de nuestro
sistema [18, [19, [9]. De manera general, podemos hacer un desarrollo en serie de Taylor
de la siguiente forma:

ko(k — ko) (k — ko)?

Ex ~ Ey + (2.11)
k 0 ml(l{io) 2m2(/€0)
De donde obtenemos los siguientes resultados para los pardmetros de my y mo:
OE\ " . [(O*E\!

Donde m; es la masa inercial del paquete de ondas con velocidad de grupo v, = 0, E(k),
entonces podemos pensar a 1m; como la masa asociada al movimiento cldsico del siste-
ma. Por otro lado, mo describe la aceleracion del paquete de ondas en presencia de una
fuerza externa, también se le asocia con el esparcimiento del paquete y por eso también
se le llama la masa de difusion [l18, 9]. Puestos de manera explicita, es evidente que los
parametros de masa estardn relacionados con la curvatura de la relacion de dispersion; en

10 PROYECTO TERMINAL I



2.1 Masa efectiva 2 POLARITONES EN ACOPLAMIENTO COHERENTE

upP
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Figura 4: Masa efectiva difusa para los polaritones superiores e inferiores como funcién
de la desintonizacion.

particular, para una relacion de dispersion parabdlica la primer derivada se hace cero y
por lo tanto m; = 0.

En nuestro caso, nos interesa saber el comportamiento de la masa efectiva para los pola-
ritones superiores e inferiores, para obtener la masa efectiva debemos evaluar a momento
cero, de este modo el inico pardmetro relevante sera m* y estard en términos de la desin-
tonizacion. Esto debido a que queremos observar el comportamiento de la masa depen-
diendo de si la parte dominante es foténica o material, también qué es lo que pasa en el
punto de maxima hibridacién.

Usando la expresion 2.9y la definicién de dx calculamos la primera y segunda derivada:

dz 1 k k 5 o\ —1/2 k k
e R (G Y o

Con esto, podemos calcular la segunda derivada:

2 1,71 1 1,y 32,k kN
:2(+)¢2(5k+49) 2= - =) +

ok? me My me My
1,y o122k kN 1,5, -2 /1 1
5 (% +407) (m—m> o (0 +402) 5k(c—m$>

Ya que lo que nos interesa ver es cdmo se comporta la masa efectiva de los polaritones en
funcién de qué parte estd dominando, la material o fotonica, debemos hacer £ — 0 para
que la masa quede en funcién de la desintonizacién de la siguiente forma:

el _1 <1+1>i5(1/mc—1/mr) _
k2, 2\ \me  my, NZIES T2

el (b)) 5 )

11 PROYECTO TERMINAL I



2.1 Masa efectiva 2 POLARITONES EN ACOPLAMIENTO COHERENTE
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Figura 5: Gréfica de la primera y segunda derivada de la relacién de dispersion. Equiva-
lentes a las expresiones para my y meo.

De ésta expresion identificamos a los coeficientes de Hopfield, por lo que la masa de los
polaritones abajo y arriba quede expresada como:

2 2

L _ .5 (2.13)
mip Me My
2 2

L _ S, ¢ (2.14)

mip  Me My

La grifica de la masa efectiva de los polaritones se muestra en la Figura 4] Vemos que
en el punto de mdxima hibridacién (6 = 0) las masas de los polaritones arriba y aba-
jo coinciden, esto es evidente desde el hecho de que en este punto los coeficientes de
Hopfield valen lo mismo (dado que la fraccién de luz es igual a la material), por lo
tanto, el valor de las masas en este punto es simplemente el valor de la masa reducida:
m* = 2m,m./(m,+m.). El comportamiento de ambas masas se corresponde con los va-
lores de los coeficientes de Hopfield en cada intervalo, recordando que estamos tomando
el valor inverso.

También podemos estudiar el caso de los pardmetros de masa para la energia de los polari-
tones en funcién del momento, usando las derivadas que ya calculamos y la definicién de
los parametros graficamos las masas para la rama de los polaritones inferiores, dado que
ésta es la que tiene una curvatura anémala mucho mads notoria que la de los polaritones
superiores.

12 PROYECTO TERMINAL I



3 DISIPACION EN EXCITONES-POLARITONES

Figura 6: Esquema de la disipacion en el sistema exciton-polariton. Aqui se muestra la
exposicién a un baifio propio para cada parte del sistema, caracterizado por los pardmetros
Yz ¥ Ve, para la parte excitonica y fotonica, respectivamente. Ademads, el bafio conjunto lo
determina el pardmetro €2;,,

En la Figura[5| vemos que la primer derivada, asociada a m, es siempre positiva, de modo
que para el caso coherente no hay valores negativos para la primer derivada, y por lo tanto
para el pardmetro de masa m; [9]]. Sin embargo para la segunda derivada, asociada a ms,
aparecen valores negativos a partir del cambio de curvatura en la relacién de dispersion,
donde la segunda derivada diverge en los puntos de inflexion.

3. Disipacion en excitones-polaritones

En la seccién anterior, vimos cdmo se comporta el sistema con un acoplamiento coheren-
te; esa caracteristica es propia de un sistema acoplado ideal, dado que no existen pérdidas
de energia éste serd un sistema conservativo. A continuacion, exploraremos el caso de un
sistema exciton-polariton sujeto a disipaciones tanto en las partes excitonica y foténica asi
como en el acoplamiento mismo. Esto quiere decir que cada parte del sistema, excitones
y fotones, estd inmerso en un bafio propio, dando como resultado una pérdida de energia
para cada parte del sistema, como consecuencia de las imperfecciones de la cavidad, por
ejemplo, la disipacion de la parte foténica es debido a las imperfecciones de los espe-
jos [9]. Ademads, existe un bafo conjunto para ambos sistemas debido al acoplamiento
entre éstos, lo cual genera una pérdida extra [4, 9]. Lo cual puede ilustrarse en el esquema
de la figura [6] Lo que nos interesa es cémo se modifica el sistema dependiendo de qué
disipaciones estén presentes, por lo tanto, trabajaremos tres casos:

1. Sdlo la disipacion en el acoplamiento estd presente.
2. Solo hay disipacion en el sistema no interactuante, el acoplamiento es coherente.

3. La disipacidn estd presente en ambas partes del sistema, es decir, el caso 1y 2 al
mismo tiempo.
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3.1. Casol

Para incluir el acoplamiento disipativo, modificamos el hamiltoniano de la siguiente for-
ma:

T AT At o Qp — Q| |2k
H= Xk: il él [QR Qe 1 [CJ G-D

Donde el término imaginario fuera de la diagonal corresponde a la disipacion solamente
en el acoplamiento del sistema exciton-polariton [20}9]. Dicho esto, nos interesa ver cémo
la inclusion de este término disipativo afecta a las variables de interés en el sistema.

Del mismo modo que en el caso coherente, proponemos una transformacién del mismo
tipo, con la diferencia de que los coeficientes de Hopfield para este caso se verdn modifi-
cados (tan solo por el hecho de que 2 es complejo, pero una constante a fin de cuentas):

~ 1 Ok _ -
C2=-|1+ y SE=1-C} (3.2)
ko2 ( Vo7 + 4 - mimy) . g

Al igual que en el caso coherente, podemos diagonalizar el Hamiltoniano mediante la
transformacion y los coeficientes. Obteniendo asi los eigenvalores de la energia. Con la
diferencia de que ahora tendremos valores complejos debido al término disipativo. Con
esto, las energias quedan de la siguiente forma:

1
EII(JP’LP — Z‘fkaP’LP = 5 (51( + 2€£ + \/(5]% + 4(QR - ZQZm)2> (33)

Donde ~ representa la parte imaginaria de los valores de la energia.

Para encontrar explicitamente la parte imaginaria y real [21], recordemos que para un
nimero complejo z = a + 1b:

Va+ib= ( |Z|2+a +i|z| |Z|2_a) (3.4)

Hacemos el cdlculo explicito para nuestro caso, de manera general:

VO + 4R — iQ0m)? = (07 + 4% — 92,,)) — i(322m) (3.5)

Por lo tanto:
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0%)

0F +4(9% — 02,))" + (8QQim)? + 02 + 4(0% —
Re(\/éﬁ+4(QR—lle)2>:$\/(k+ ( R zm)) +( 2R ) + 0 + ( R

,))

2

m <\/5§ +4(Qp — Z'Qim)2> _ _J VB + 425 — 92,))° + (828Qm)? — (0 + 4(% —

Entonces ya podemos escribir la parte real e imaginaria de la energia:

opir " J (6 + 40 = 02,)) + (0 un)? + 8 + 4% — )
k

1
== | 6+ 228
2 k+ gk 2

JUPLP _ 41 J \/(52 +4(Q% — ngm)>2 + (8Qr02im)? — (0 +4(Q% — Q3,))
k T2 2

Como en el caso anterior, primero analicemos la situaciéon para momento cero con la
normalizacidn correcta; de modo que la expresion toma la siguiente forma:

gUPLP ] L \/(52—1—(1—62))2—1-(2(2)2—1-524—(1—{52) »
20, 2 2 (3-6)
AUPLP 1 \/(52 (1-— QQ)) +(2Q)2 — (624 (1 — 2
= 3= (3.7)
205 9 9

Donde ) = Q,,,, /Qry b=10 /2. La gréfica de la parte real e imaginaria, ecuaciones 3.6|
y|3.7, se muestran en la Figura |7 I para diferentes valores de Q, especialmente para la[7(a)
podemos ver las diferencias en comparacion al caso coherente. En particular, vemos que
a valores mds grandes de Q hay una mayor atraccién de niveles caracterizada por la ten-
dencia a formar un cuello de botella entre ambos modos, esto confirmado también por la
parte imaginaria, ya que esa separacion entre las ramas es caracteristica de la atraccién
de niveles [3} 4, 22, 23]]. Sin embargo, el gap de mantiene constante independientemente
de los valores de Q, creando esas rectas de maximo acercamiento entre niveles donde la
separacion es constante. Otra cosa que debemos notar, es que a mayores valores de Q las
curvas de energfas pueden cruzar la curva de la parte fotonica y excitonica. Por ejemplo,
tomando la rama de los polaritones abajo con € = 3, cuando § > 0 y la parte exciténica
comienza a dominar, vemos que la curva rebasa el limite de la energia de los excitones,
lo cual fisicamente no tiene sentido tener tanta disipacion en el acoplamiento, ya que no
estaria dentro de los limites del acoplamiento fuerte [3].

Retomando las expresiones para la parte real e imaginaria de la energia, podemos aho-
ra graficarlas en funcién del momento usando las definiciones de la desintonizacion. Las
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Figura 7: Espectro de energia de los excitones-polaritones para diferentes valores de Q
como funcidn de la desintonizacion. (a) Parte real y (b) la parte imaginaria. Las lineas
punteadas corresponden a la energia de los sistemas no interactuantes.
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i()/4mxﬂ

(b)

Figura 8: Espectro de energfa de los excitones-polaritones para diferentes valores de
como funcién del momento. (a) Parte real y (b) la parte imaginaria. Las lineas punteadas
corresponden a la energia de los sistemas no interactuantes.

graficas se muestran en la Figura[§] En la primera vemos la parte real exhibiendo, de nue-
vo, una atraccion de niveles entre los dos modos, y al igual que en el caso en funcion de
la desintonizacion, el gap se mantiene constante para diferentes valores del acoplamien-
to disipativo. También, la relaciéon de dispersion exhibe claramente un comportamiento
andmalo, los puntos de inflexién son ahora mucho més pronunciados que en el caso cohe-
rente [[17]], lo que dard lugar a valores diferentes en los pardmetros de masa.

3.1.1. Masa efectiva, caso 1

Dicho lo anterior para el caso coherente, esperamos que el acoplamiento disipativo afecte
a la dindmica de los polaritones, dichos efectos se veran manifestados en los pardmetros
de masa. Ademds, ya vimos que la relacién de dispersion en este caso presenta un com-
portamiento andmalo, por lo tanto, esperamos un resultado diferente para las masas [9]].
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Retomando las expresiones para los pardmetros de masa, calculamos de nuevo las deriva-
das, que tendran practicamente la misma forma, con la diferencia de que la constante de
acoplamiento es compleja, debido a la inclusion de la disipacion.

Je 1 k k 9 , o\ —1/2 k k

2 B 2

ok? me My me My

k k 1

1/, ) 2\ —1/2 S| 9 ) 9\ —1/2 1

Me My me

Hacemos al momento cero para dejar a la masa en términos de la desintonizacion. Lo que
nos queda es similar al caso coherente:

—1 i i 6(1/mc_1/mx)
iy 2 {(mc " mx> * \/52 +4(Qp — Zle>2}

1 |1 ) 1 |1 )
= — |- |1+ +— |z |1F
me |2 V2 + 4Qn — Q)2 my |2 Vo2 + 4(Qn — Q)2

Identificamos a los coeficientes de Hopfield modificados, de modo que la masa efectiva
queda en términos de €stos:

o
ok?

1 2 Q2
L _ 5 (3.8)
mUP me my
1 Q2 ~2
_ 5S¢ (3.9)

k
mip M My

Como se trata de valores complejos, debemos separar la parte real de la imaginaria, en la
Figura[9] se muestra la grafica de las masas. Al igual que en el caso coherente en el punto
de mdxima hibridacién (§ = 0), la masa toma el valor de m* = 2m,m./(m, + m.).
Cuando Q) es pequeiio la masa tiende a la forma del caso coherente, en cuanto este factor
crece, la curvatura de la masa efectiva empieza a tener un cambio en intervalos cada vez
mads grandes de 9. Si nos fijamos en un valor constante de ¢, la masa tiende a ser menor
para valores mds grandes de Q, esto lo podemos atribuir a que en cuanto mds grande sea
la disipacién en el acoplamiento, la interaccidn entre ambos sistemas serd menor, lo que
conlleva a un valor menor de la masa, pues como hemos mencionado la masa efectiva
se manifiesta debido a las interacciones del sistema. También, es importante notar que
para valores cada vez mas grandes de la disipacion los puntos donde la masa se vuelve
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(a) Masa efectiva de los polaritones arriba.
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(b) Masa efectiva de los polaritones abajo.

Figura 9: Masa efectiva de los polaritones en funcién de la desintonizacion, para diferentes
valores de (2.

negativa serdn cada vez menor. Para ver el comportamiento de la masa en funcién de la
desintonizaci6n & y la disipacién ) se muestra en la Figura|10{un mapa de densidad para
la masa efectiva, en concordancia con el caso coherente, el maximo crecimiento de la
masa serd en la recta para ) = 0 pero conforme la disipacién crece la masa tiene valores
cada vez mds bajos, hasta llegar a valores de cero y negativos. En la Figura para
los polaritones arriba, la masa negativa se presenta para valores cada vez menores de ¢
conforme la disipacién crece, como lo indica la curva color negro.

La recta que nos da los puntos donde la masa efectiva es cero, la obtenemos mediante la
siguiente ecuacion:

Re [t (1 4 1) 4 0 /me —1/ma) —0 (3.10)
Me Mo/ [52 4 A(Qp — iQ)?
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40

-4 -2 0 2 4 0
/20 §/20

(a) Masa de los polaritones arriba. (b) Masa de los polaritones abajo.

Figura 10: Mapa de densidad para la masa efectiva dependiendo de la desintonizacion y
(2. En negro se muestran las curvas donde la masa es cero m* = 0.

Por otro lado, podemos ver el comportamiento de los pardmetros de masa con respecto al
momento de los polaritones abajo. Como anticipamos, la dispersién para este caso es no-
toriamente anémala, ya que los puntos de inflexion en la curvatura son mas pronunciados
que en el caso coherente. Esto se muestra en la Figura[T1] en este caso la masa inercial
si tomara valores negativos pasando los puntos de inflexién de la relacion de dispersion,
dada la definicién de la masa inercial en términos de la velocidad de grupo, podemos
interpretar esas zonas donde m; es negativa como aquellas donde si se le aplica un im-
pulso al grupo, éste se movera en direccién opuesta al impulso, esto se ha demostrado
experimentalmente y ademads, la condicidn para que se manifieste este fendmeno es que
la disipacién en el acoplamiento sea mayor que el acoplamiento coherente [9]]. De manera
similar, ms tiene valores negativos acorde a los puntos de inflexion.

3.2. Caso?2

Los excitones-polaritones, debido a la configuracion en la que se consiguen, son intrinse-
camente un sistema que puede interactuar con sus alrededores. Por lo que para un estudio
del sistema a profundidad, debemos considerar aquellas variables relevantes debidas a su
interaccion con los alrededores. En la seccion anterior estudiamos el caso de la disipacion
en el acoplamiento, lo que corresponde a la recombinacion de algunos excitones y el es-
cape de algunos fotones fuera de la cavidad. Ahora, nos interesa ver como se modifica
el sistema bajo la disipacion para cada parte constituyente, la material y foténica. En los
excitones incluimos un factor de disipacion y otro para los fotones debido a las imperfec-
ciones de los espejos y la configuracién dentro de la cavidad. Siguiendo el mismo método
que en el caso 1, afiadimos un término no hermitiano al hamiltoniano [20]. Por lo que el
sistema de excitones-polaritones quedara descrito por el siguiente hamiltoniano:
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40J L
20

~20
-40

m k), ma(k)
(]

0.4
0.2
0.0
-0.2
-0.4

4 ) 0 2 4
i / 4m Q)

E/2Q

Figura 11: Pardmetros de masa para los polaritones abajo. En el grafico inferior vemos la
relacion de dispersion y en el superior los pardmetros de masa m, en rojo y ms en azul.

Tomando ) = 2.

= > [(ef — ive)Bldn + (ef — ive)ehtn + QaLa + o)
k

Para encontrar las energias del sistema, proponemos la misma transformacion que en los
dos casos anteriores, tomando a los coeficientes de Hopfield como en el caso coherente,
ecuacion [2.4] También podemos obtener las energfas para ambas ramas diagonalizando
directamente la matriz del hamiltoniano. Si planteamos el problema de eigenvalores, te-

nemos que:

Ep — 1Yy — € Q Ciw i c i N 02
0O e —ive—e | (e — 172 —€)(ex — i —€) = Q
=€+ (i(ve +7e) — (ef +e5)) € (3.11)
+ (5 (ex — i) — 17 (ex — 17e) — QQ)
=0

Al resolver la ecuacién de segundo grado y acomodando los términos de manera conve-
niente, encontramos las energias para ambos modos:
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. 1 ‘ .
e =i =5 <5k + 268 — (% + %) £ /[0 — i(7e — 7)) + 492) (3.12)

Como de nuevo nos interesan la parte real e imaginaria de las energias, usamos la misma
expresion del caso anterior:

VIok = i(7e — %)) + 402 = VI8 = (e — 70)? + 402) — i [26(ve — 7))

Proseguimos a escribir la parte real e imaginaria de la energia:

vpLp _ 1
c _

k — 551( + €§
11J VI — (e = 7)? + 427 + 4823 — 7%2)” + 6 — (e — 7)* + 402
2 2
vpLp 1
N =50+ )

iJ VI = (e = )2 + 407 + 402 (7 — )2 — (8 — (e — 1)2 + 402)
2

Con esto ya podriamos graficar la energia de los polaritones, sin embargo, podemos hacer
una aproximacion para que las expresiones tomen una forma mas sencilla, dado que ha-
cerlo analiticamente arroja expresiones mds complejas. Tomemos la expresion [3.12] dado
que la diferencia (7. — 7,) por lo general es menor a uno, realizamos una expansion en
serie de taylor de lo que estd dentro de la raiz a segundo orden:

: 1 . 1 1
e =i R Dot e = S ) £ 50+ 402
2\ /62 + 402
1 i (3.13)
- (5k +oe 4+ Jo2 492)
. 1 Ok 1 Ok
— | Vaz |1 m—m—= ] TV |1 F =
( . ( Vo + 492) . ( VR + 492))
Donde identificamos a 51[(] PLE conla energia de los polaritones superiores e inferiores para

el caso con acoplamiento coherente, para dicho caso también definimos a los coeficientes
de Hopfield, los cuales asociamos a la expresién obtenida como VW = ~,C2 + ~.S2 y
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WP = ~,SE + ~.CZ. En consecuencia, al hacer la aproximacion anterior hemos dejado a
la energia en términos de los coeficientes de Hopfield y la energia ya conocida del caso
coherente, que si bien sigue teniendo una parte real y otra imaginaria, esto es mas facil de
trabajar. Recordemos que al aplicar la transformacién y diagonalizar el Hamiltoniano, lo
que ganamos es poder escribir el nuevo Hamiltoniano en términos de los operadores de
creacion y anhiquilacion de los polaritones arriba y abajo, con la forma de nuestra energia,
obtenemos lo siguiente:

LP _ ;. LP 7
N . /\.I_ A.i. Efk _Z’Yk 0 Lk
e e
LP

k o s (3.14)
S (et — i) LELic + (" — i F) UL U
k

Con todos estos resultados ya podemos graficar la energia de los polaritones, dado que
7. depende de la disipacion que exista en el material del que estén hechos los espejos,
este pardmetro lo podemos conocer experimentalmente de antemano. Por lo que podemos
dejar fijo 7. y ver como varia nuestro sistema para diferentes valores de 7,. Como se
observa en la Figura[I2(a)] existe una similitud entre como se comportan ambas ramas al
caso coherente y éste que estamos considerando, sin embargo, la inclusién de los nuevos
términos disipativos hace que la brecha entre ambos modos se reduzca para valores mas
altos de ~, [3]. Por otro lado, en el caso anterior veiamos que a mayor Qla energia de
los polaritones cruzaba las energias de los excitones y fotones no interactuantes, aqui
esto no se presenta, la energia de los polaritones muestra un acercamiento asint6tico a
las energias de la parte material y fotonica, asi como en el caso coherente, por lo tanto,
ese comportamiento puede ser atribuido al acoplamiento disipativo. También, a diferencia
del primer caso, en éste no observamos esas rectas en las que ambos modos tendian a
acercarse conforme ) crecia, siendo esto otra caracteristica del acoplamiento disipativo,
es decir, la atraccidon de niveles [22, [16]]. Lo més sobresaliente de este grifico es que
la brecha disminuye conforme el valor 7, también lo hace, creando puntos de maximo
acercamiento entre ambos modos, en especifico las curvas moradas en la Figura @] lo
exhiben de manera evidente, éstos se conocen como puntos excepcionales [3, 4] donde
las eigenenergias de cada rama tienden a adquirir valores iguales y el sistema se vuelve
degenerado, estos puntos también marcan la transicién de valores reales a complejos de
las eigenenergias, sin embargo, en la imagen esto ocurre para valores muy grandes de
v, v fuera del acoplamiento fuerte, por lo que estas situaciones no son de mucho interés
fisico. Este curioso fenémeno también se ilustra en la Figura donde se muestran
las partes imaginarias de la eigenenergia de cada modo. Como se verd mds adelante en
el texto, la informacion que nos da la parte imaginaria es que €sta se encuentra acotada
asintéticamente por los valores de disipacion del sistema. Lo que si podemos ver de la
grifica y las expresiones, es que ambas ramas de la parte imaginaria se intersectan en
§ = 0, el punto estd dado por Y7 (6 = 0) = v (5 = 0) = (7. + 72)/2-

En la figura se muestra el espectro de energia como funcién del momento. De nue-
vo, la inclusién de los nuevos términos disipativos crea una disminucién de la brecha, al
igual que en la gréfica anterior, en ésta tampoco se presenta el caso donde la energia de los
polaritones rebasa a la de los excitones y fotones. Confirmando que eso sdlo se presenta
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en el caso con acoplamiento disipativo, ademads, en ese caso la relacion de dispersion se
volvia especialmente andmala gracias a eso, en este caso, si bien la curvatura cambia de
manera apreciable, no parece que difiera demasiado del caso coherente. Por lo tanto, la
relacion de dispersidn andmala es también una caracteristica del acoplamiento disipati-
VO, Y en consecuencia, también la aparicion de la masa negativa [17, 9]; recordemos que
la masa negativa aparece debido a la curvatura de la relacién de dispersion. En la Figu-
ra [I3(b)| la parte imaginaria de la energia muestra las mismas caracteristicas que en la
gréfica anterior.

(Cémo podemos entender la disminucién de la brecha? Partamos del hecho de que a
diferencia del caso coherente, aqui las energias son nimeros complejos, donde la parte
imaginaria nos da la tasa de decaimiento. Por lo tanto, al existir términos de disipacion
para cada parte del sistema, ambas partes estdn perdiendo energia a diferentes ritmos, y
ese es el punto importante, que la tasa de decaimiento para ambas partes es diferente.
Pensemos que el sistema quiere equilibrar esta pérdida de ambas partes mezclando ambos
modos, dando lugar a una disminucién de la brecha o diferencia de fases (como se vera
mas adelante), fruto de equlibrar las tasas de decaimiento en cada sistema.

3.2.1. Masa efectiva, caso 2
Con la expresion de la energia para los polaritones, podemos repetir el proceso y calcular

las derivadas con respecto al momento y asi obtener como se ven las masas efectivas para
este caso:

Para la segunda derivada obtenemos lo siguiente:

_H

P 1,1 1N 1 , o o2k kN
W—z(m+m>i2((5k—i(%—%)) +4Q) <mc_m$>
1 , 2 9\ —1/2 , 1 1
£ 5 (G =0 = 7)) +49%) 7 (G — i3 — 1)) (m - m) (3.15)
1
2

Con esto ya tendriamos las expresiones para poder graficar la masa efectiva, sin embargo,
hagamos uso de la expresion aproximada para obtener una forma mas simple de la masa
efectiva a momento cero. Tomando la ecuacion [3.25] la segunda derivada estd dada por:
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(b) Parte imaginaria de la energia.

Figura 12: Espectro de energia de los exitones-polaritones como funcién de la desinto-
nizacidén para diferentes valores de -, manteniendo . = 0.1.En (a) las lineas punteadas
corresponden a la energia de los excitones y fotones por si solos.
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(b) Parte imaginaria de la energfa.

Figura 13: Espectro de energia de los exitones-polaritones como funcién del momento
para diferentes valores de -y, manteniendo . = 0.1.En (a) las lineas punteadas correspon-
den a la energia de los excitones y fotones no interactuantes.
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92e B 2eUPEP B iaQ%(UP,LP
Ok? O0k? O0k?

(3.16)

Donde el primer término de ésta ecuacidn ya lo conocemos, es la masa efectiva que calcu-
lamos para el caso coherente. Para el segundo término, ya vimos que depende tinicamente
de los coeficientes de Hopfield, por lo tanto, si queremos la segunda derivada, prime-
ro debemos obtener las derivadas de los coeficientes de Hopfield. Lo cual resulta en lo
siguiente:

ok B

Jeaor (Rt A02)pP

252 1 ((/{/mc— k/mg)0E  k/me— k/mx)
= _

Ok (02 + 4Q2)3/2 [62 + 402

070'13_ 1 (k/mc_k/mx (k/mc_k/mm)(sl%)
T2

Y la segunda derivada:

’Cy 3 (k/mc — k/my)%6; 3 (k/m. — k/mg)? 0k
o2 T2 (AP 2 (024 AP

(3.17)
_ }(1/77@5 — 1/my,)d¢ i 1 (1/m. —1/m,)
2 (0% + 402)3/2 2 /62 4402
Esto para un solo coeficiente, para el siguiente tenemos:
0*Si 3 (k/me— k/my)*0 3 (k/me — k/m,)?53
Okz 2 (0 +402)3/2 2 (0 +4Q2)5/2
(3.18)

4 1(1/mc —1/my,)d; _ 1(1/mc —1/my)
2 (0F +402)3/2 2 /62 4+ 402

De este modo, ya tenemos todo para escribir las expresiones para la masa efectiva a mo-
mento cero. Esto es:

o5 (1(1/me—1/m,) 52
_+_%2MFHW(%WJﬁwW_1 G-19)

Esto para los polaritones arriba a momento cero. Para los polaritones abajo:

1 SQ 02 . 1 (1/mc - ]-/m;r> (52
T T, \2 - l———o; 2
mrp  Me * My ! (2 Vo2 + 402 (Ve = ) 52 + 402 (3.20)
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3.2 Caso?2 3 DISIPACION EN EXCITONES-POLARITONES

Con estas expresiones recién encontradas, podemos graficar la masa efectiva como fun-
cién de la desintonizacién tomando la parte real del inverso de las expresiones[3.19]y[3.20]
tal como se observa en la figura [I4] Vemos que la forma de las curvas es similar al caso
coherente, al menos para valores pequefios de 7,, ya que en cuanto la disipacién crece
se presenta un decaimiento similar al de las graficas de la figura[9] Ademas, en los casos
anteriores, la masa era la misma para el punto de mdxima hibridacion, en este caso existe
una brecha entre los valores de la masa en el punto § = 0 que varia dependiendo del valor
de ,. Lo relevante, es que de acuerdo a las expresiones para la masa efectiva[3.19)y[3.20]
el término que involucra los valores de la disipacién es (7. — 7,.) no ambos por separado,
por lo tanto, el como varie la masa en este caso depende de como se comparan ambos
valores. Para la masa de los polaritones superiores, si la diferencia entre los términos de
disipacion es pequefia, €sta se aproxima cada vez mds al valor del caso coherente en el
punto de maxima hibridacién, en cambio, si la diferencia es muy grande (v, > ~.) la
masa en este punto disminuird cada vez mds, en concordancia al significado que tenemos
de la disipacion, ya que si ésta es mayor en la parte material que en la foténica, quiere
decir que existe un mayor decaimiento en los excitones que en los fotones, dando lugar
a que la masa efectiva sea dominada por la parte foténica y como ésta tiene un valor pe-
queio, la masa del sistema disminuye cada vez mds conforme la disipacién aumenta. De
manera similar ocurre en el caso de los polaritones inferiores, pero con la diferencia de
que la masa aumenta en el punto de maxima hibridacién conforme ~, también aumenta,
esto en concordancia con la diferencia de signo obtenida en las expresiones para la masa
efectiva. En conclusion, esta brecha que vemos en los valores de la masa en el punto de
maxima hibridacién es una caracteristica de la disipacion de cada elemento por separado,
a diferencia del caso con acoplamiento disipativo.

Al igual que en el caso de la seccién anterior, la masa efectiva de ambas ramas puede
llegar a tener valores negativos y por lo tanto, existen puntos donde m* = 0. Los cuales
podemos encontrar resolviendo las siguientes ecuaciones:

c? 8?2 [(1(1/me.—1/my,) 52
Re EJFWTJC—@ B 2 1 402 (Ve — Ya) 75§+492—1
2 2 _ 2

me i me |2 /62 4 402 Of + 402

Resolviendo estas ecuaciones, podemos ver graficamente los puntos donde la masa se
hace cero para diferentes valores de la desintonizacién y -y,. Esto con un density plot
como se muestra en la Figura donde se ha puesto en negro las curvas donde la masa
efectiva vale cero. A diferencia del caso 1, las zonas con masa negativa son menores
para este caso, confirmando que la masa negativa se presenta en mayor grado debido al
acoplamiento disipativo. Ademads, las curvas de masa cero se presentan a grandes valores
de v,, al igual que en el punto de maxima hibridacion se aprecia la brecha que existe entre
la masa para diferentes valores de la disipacion. Otra cosa relevante, es que si comparamos
con la figura [I0] allf el crecimiento de la masa para valores grandes de la desintonizacion
se ve ampliamente afectada por el factor Q, en este caso, el crecimiento de las masas no
tiene una diferencia apreciable respecto al caso coherente.
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4 ¥,=0.2
— =03
31 | — =05
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1/
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5/20

(a) Masa efectiva UP.
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(b) Masa efectiva LP.

Figura 14: Masa efectiva para los polaritones como funcién de la desintonizacion para
diferentes valores de v, fijando . = 0.1.

5/20 5/2Q

(a) Masa de los polaritones arriba. (b) Masa de los polaritones abajo.

Figura 15: Mapa de densidad para la masa efectiva dependiendo de la desintonizacion y
v.. En negro, lineas continuas, se muestran las curvas donde la masa es cero. Las lineas
negras punteadas corresponden a v, = 1.
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Figura 16: Pardmetros de masa para los polaritones abajo. En el grafico inferior vemos la
relacion de dispersion y en el superior los pardmetros de masa m, en rojo y ms en azul.
Tomando v, = 0.7.

Ahora podemos estudiar como se comportan los pardmetros de masa en funcién del mo-
mento para la relacién de dispersiéon de los polaritones inferiores. Anticipamos que el
comportamiento debe ser similar al del caso coherente, sin embargo, al introducir la di-
sipacion deben aparecer las brechas para diferentes valores de 7,. Como vemos en la
figura[I6]el comportamiento de los pardmetros de masa es similar al caso coherente, prin-
cipalmente en el hecho de que para la masa inercial no hay valores negativos dentro del
rango apropiado para el sistema. Como ya habfamos anticipado, la masa negativa no apa-
rece debido a que la relacion de dispersion es similar al caso coherente, todo lo contrario
para el caso 1. Para la masa de difusion, vemos un cambio significativo respecto al caso 1
y el caso coherente. En primer lugar, en el caso 1 y el coherente, no aparecen esos peque-
nos valles en las ramas negativas del pardmetro m,. Al igual que debido a los cambios de
curvatura presentes en el caso 1, alli existen mds puntos de inflexién en donde el signo de
la masa cambia, a diferencia de lo que observamos en este caso.

3.3. Caso3

Ya examinos los casos donde la disipacién se encuentra, por separado, en los elementos
y el acoplamiento. Ahora, consideremos el caso completo de la disipacién en los excito-
nes polaritones. Para eso, al tener los dos casos anteriores al mismo tiempo, tenemos el
siguiente hamiltoniano:
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[ } =17 Qp — Q| | T
QR —1Q%m €k — e Ck

3.21)
Z — i )i a + (6 — i) e ek + (g — 1Q%m) (B + 23]
k

Con los resultados de los dos casos anteriores, seguimos un procedimiento andlogo. Asi
que si proponemos la transformacion [2.3| usando los coeficientes de Hopfield tal y como
los definimos para el caso 1, con acoplamiento disipativo. Podemos diagonalizar el ha-
miltoniano y obtener las eigenenergias. Del mismo modo, también podemos obtenerlas
encontrando los eigenvalores de la matriz:

ep — 1Yz — € Qr —1Qim,
QR_Zsz €ﬁ—i’yc—€

Por lo tanto, los valores de la energia, son:

e TP —ind PR = <6k + 2ef — (Ve +7.) £ \/ Ok — i(Ye — 7)) + 4(Qr — Zsz)Z)
(3.23)

De nuevo, nos interesa ver la parte real e imaginaria de esta expresion, para esto, usamos
la expresion Obtenemos:

\/(5k - Z.(fYc - ’Y:Jc)) + 4<QR - Zsz)Q = \/[512 - (70 - 7x)2 + 4(Q%% - Q?m)]
—i 20 + 825 Qim]

(3.24)

Uniendo esto con [3.23] tenemos:

UPLP

QQ

m

)

2 2

31 PROYECTO TERMINAL I

N J VI8 = (e = 72)? +4(2% - Q%m>]2 T (265 + 82 + 5 — (e — 72)* + 4 —



3.3 Caso3 3 DISIPACION EN EXCITONES-POLARITONES

Ok +4QrD;,
|20k + 8Q2rim|

7UP,LP _ }
k 2

(Yo +7e) £

J VI = O = 222 + 4(0% = 0B + 20 + 800’ = (5 = (0 = 72)? + 42 — )

2

De igual forma, con esto ya podriamos graficar las energias y calcular la masa efectiva.
Sin embargo, hagamos la misma aproximacion que en el caso 2:

1 1 ‘
5 (e 70 & 5y/0F 4 4(Qn — i)?

¢ 51((70 - ’755)
2.\ /6% + AQn — Qn)?

1 )
=3 (5k + 2¢, = \/513 +4(Qr — ZQim)Q)

~
~

UPLP . UPLP _ 1
€k — 551( +ex —
7

1 Ok 1 Ok
— 1| Ve 1+ + Yes 1 +
( 2 ( Wﬁ +4(Qp — mimy) 2 ( wsg + 4(Qp — i Q)2

(3.25)

Donde identificamos de nueva cuenta a los coeficientes de Hopfield, pero esta vez con
la modificacién del acoplamiento disipativo, ecuacion Ast, WP = 7, C + .52
y Wt = 4.5 + 7.CZ. De la misma forma que en los otros casos, al diagonalizar el
hamiltoniano, podemos escribirlo de la siguiente manera:

R R . LP _ ;. LP 0 ﬁ
= it 1 |k Yk . Lk
Sla) [ |
(3.26)
= > (& — i L+ (e — i ") 0Lk
k

Con esta informacion, ya podemos graficar la energia de los polaritones. Pero antes de ha-
cerlo, los dos casos pasados ya nos proveen de una intuicion acerca de lo que esperamos
ver en este caso, no solo matemdticamente, sino que la interpretacion fisica que hagamos
también se desprende de ellos. En primer lugar, el caso II indica que la presencia de los
pardmetros v, y 7. disminuyen la brecha entre ambos modos, ademas de la atraccion de
niveles presente en el caso 1. Por otro lado, el acoplamiento disipativo, hard que las curvas
de ambos modos superen a las curvas de energia de los excitones y fotones no interactuan-
tes, tal como en la figura[§]y [7] También esperamos que el acoplamiento disipativo haga
que la curvatura de la relacién de dispersion sea andmala, dando lugar a la masa nega-
tiva. Esto se confirma en las figuras [I7]y [I8] especificamente, en la se aprecia la
aparicion de los puntos excepcionales, sin embargo, éstos se encuentran desplazados ha-
cia la derecha. Atribuimos esto a la presencia del acoplamiento disipativo, asi como en
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—— 1,=0.05
¥x=0.2

1 — yx=0.5
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§/20

(a) Energia como funcién de la desintonizacién.

//\
-

-2 -1 0 1 2
5/20

(b) Parte imaginaria de la energfa.

Figura 17: Espectro de energia de los excitones-polaritones como funcién de la desinto-
nizacién para diferentes valores de v, manteniendo 7. = 0.1y Q) = 1. En (a) las lineas
punteadas corresponden a la energia de los excitones y fotones no interactuantes, en linea
negra se muestra la energia de los excitones-polaritones para el caso coherente.

parte imaginaria de la figura[[7(b)] los puntos excepcionales se manifiestan cuando ambas
ramas se aproximan una de la otra, en el caso 2 esto sucedia en el punto de maxima hibri-
dacion. En la figura|l18|se presentan la parte real e imaginaria de la energia como funcion
del momento, como mencionamos es clara la contribucién del acoplamiento disipativo en
la curvatura andmala de la relacion de dispersion y la disminucion de la brecha, conse-
cuencia de la disipacién en cada elemento del sistema. En la[I8(b)|la atraccién de niveles
se manifiesta cuando ambas ramas se separan, ademads, los puntos excepcionales apare-
cen para valores mas grandes de v,, dado que para esos valores, ambas ramas tienden a
coincidir en algin punto.
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(a) Energia como funcién del momento.
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(b) Parte imaginaria de la energfa.

Figura 18: Espectro de energia de los excitones-polaritones como funcién del momento
para diferentes valores de v, manteniendo 7. = 0.1y Q=1.En (a) las lineas punteadas
corresponden a la energia de los excitones y fotones no interactuantes, en linea negra se
muestra la energia de los excitones-polaritones para el caso coherente.
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3.3.1. Masa efectiva, caso 3

Con la ecuacion[3.23|podemos derivar y obtener los pardmetros de masa, lo cual serd muy
similar al caso 2:

(3.27)

Y para la segunda derivada:

O%e - 1 1 1 1 ) 5 ' 12 L e 2
@ - 5 (TTLC + Tnm) + 5 (((5k — Z(’Vc - %c)) + 4(QR — Zsz) ) (WLC _ Tnm)
= ‘ o2 11
£ 5 (0= i = 2))" + 42 = 192)?) " (=i = 2) (- = - )
! / : - : EookY
:Fzﬁ@—“%—ﬁwf+4@R—d%wﬂiw«x—w%—vwf<m@‘nh>
(3.28)

Como en el caso anterior, usemos la expresion aproximada para la energia, asi obtendre-
mos unas ecuaciones para la masa efectiva muy parecidas a las del caso 2. De nueva cuenta
debemos derivar los coeficientes de Hopfield, en este caso serdn los de la ecuacién @
De modo que:

oGy 1 k/fme—k/me — (k/me—k/mg)d
ok 2 \/513 +4(QR — Q)2 (62 + 4(Qr — 14,)?)3/2
o5, 1 (k/me—k/m.)o¢ — k/me.—k/m,

Ok 2\ O+ 4(Qr =)\ 62 4+ 4(Qp — iQun)?

Y la segunda derivada:

_ 3 (k/me—k/mg)?0% 3 (k/me—k/m)%
2

(0 + 4% — 32 2(8 + 4(Qp — i€4)?)*2

0202
k2

(3.29)

—_

1 (1/me — 1/m,)0% 1 1/m.—1/m,
2 (0 +4(Qr — i) 2 /52 4 4(Qp — i )?

35 PROYECTO TERMINAL I



3.3 Caso3 3 DISIPACION EN EXCITONES-POLARITONES

Esto para un solo coeficiente, para el siguiente tenemos:

2S¢ 3 (k/m.—k/m,)?6 3 (k/m.— k/my)*5
T2 2

Ok2 — 2(} +A(Qr — iQum)2)3%  2(8} + A(Qr — 1Q4m)2)?/?
) (3.30)
_1_1 (I/me—=1/mz)é 1 1/me—1/m,
2 (02 +4(Qp — iQ2;,)2)3/2 2 \/513 + 4(Qp — i Q)2

Con esto, ya podemos escribir la expresion de la masa efectiva a momento cero, la cual
estd dada por:

1 c* s (1 (1/m.—1/my) 52

— = —+——1| . (Ve = Yz) 52 0 Q) 2_1
Mmyp  Me Mg 2 \/613 +4(Qr — 1 Q4m)? i +4(Qr — iQim)
(3.31)

1 sz oc? (1 (1/m.—1/m,) 52
s =0 (1
Mmrp  Me Mg 2 \/6,3 + 4(Qg — 1Qim)? i +4(Qr — i)

(3.32)

Las masas efectivas se encuentran en la figura [19] asi como en las eigenenergias, lo que
esperamos es que se manifiesten caracteristicas de los dos casos anteriores. Lo primero es
ver que la brecha entre las masas esta presente debido al cambio en 7, como se explic6 en
el caso 2, por otro lado, debido al acoplamiento disipativo los valles en las curvas estdn
mads presentes que en el caso 2, ademds de una presencia mas clara de masas con valor
cero y negativas. Debido al acoplamiento disipativo, los valores negativos de la masa se
hacen mads presentes, de modo que vale la pena estudiar cémo se comportan estos valores
en un mapa de densidad, asi como las curvas donde m* = 0. La cual podemos graficar
mediante las siguientes ecuaciones:

c* sz (1 (1/m.—1/m,) ( 52 )
R — + — — S c 'z . -1 -
‘ (mc My ! (2 \/513 + 4(Qp — Q) (e =) 0 +4(Qr — iQym)?

sz (1 (1/me—1/my) ( 52 )
Re| —+——1i|3 c—V2) |1 — , =0
‘ (mc My ! (2 \/513 +4(Qp — iQim)2<7 %) 0 +4(Qr — iQm)?

En la figura 20| tenemos las graficas para diferentes valores de -, para valores pequefos
la masa se comporta de manera similar a la del caso 1, pero en cuanto éste crece, vemos
que la distribucién de los valores negativos de la masa cambia, pero ademads, si miramos
las curvas para masa cero, éstas se aproximan a los valores presentados en la figura [I3]
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(b) Masa efectiva LP.

Figura 19: Masa efectiva para los polaritones como funcién de la desintonizacién para
diferentes valores de 7, fijando {2 = 1y 7. = 0.1.
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Esto se manifiesta en la deformacion de la curva, como si fuera atraida hacia la zonas de
masa negativa en la figura[I5]

Hasta ahora, en los casos anteriores, hemos hablado de aquellos puntos donde la masa
efectiva vale cero, sin embargo, ;qué es lo que ésto significa? En la siguiente seccién
abordaremos el caso de un sistema cldsico para obtener mejores ideas conceptuales, sin
embargo, esta cuestion la podemos pensar de la siguiente manera: si un sistema se com-
portara como si su masa fuera cero, seria equivalente a un sistema sin ningun tipo de
fuerza externa actuando sobre él [24]]. En el caso clasico de dos osciladores acoplados,
estos, asi como el resorte, tienen un factor disipativo que permite la pérdida de energia
con los alrededores (tal y como sucede con los excitones-polaritones). Siendo un siste-
ma disipativo, también es conveniente pensarlo como poseedor de una masa efectiva, la
cual se verd afectada en funcion de la dindmica del sistema, que a su vez, depende de los
pardmetros disipativos. Dicho esto, lo que se encuentra en el caso donde la masa efec-
tiva es cero, es que el sistema se comporta como un cuerpo rigido, dado que al poseer
un momento nulo, la fuerza inercial del sistema también es cero, lo que vendria a ser
equivalente al movimiento de un sistema sin masa. En nuestro caso, lo que ocurre con el
sistema con masa efectiva cero, es algo similar, tanto la parte material como foténica del
sistema oscilan sin ningin desplazamiento de fase entre si, es decir, algo equivalente a ese
comportamiento de “cuerpo rigido” [24].

Ahora, podemos graficar los pardmetros de masa con las derivadas que ya calculamos,
esto se encuentra en la figura 21 Como el acoplamiento disipativo estd presente, la masa
inercial negativa cobra mds relevancia, a diferencia del caso 2 y en concordancia con el
caso 1 [9]. Para darle una mejor interpretacion a la masa inercial negativa, recordemos que
ésta estd relacionada con la velocidad de grupo. Por lo tanto, en la gréifica de la energia
presentada en la figura 21| tenemos dos puntos, si quisiéramos que el sistema pase del
punto azul al verde debemos aplicar un impulso (notando que estos puntos se encuentran
en una regién donde m; < 0), el paquete de ondas desacelera pero contintia propagdndose
en la misma direccién [[18]]. Por otro lado, como la velocidad de grupo también tendra
cambios de signo, cuando sea menor a cero (v < 0) al aplicarle un impulso el paquete
de onda no solo desacelera sino que cambia de direccidn, esto en concordancia con lo
reportado en [9].
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Figura 20: Mapa de densidad para la masa efectiva de los polaritones arriba y abajo de-
pendiendo de la desintonizacién y 2, para diferentes valores de ~,. En negro se muestran
las curvas donde la masa es cero m* = 0.
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Figura 21: Pardmetros de masa para los polaritones abajo. En el grifico inferior vemos
la relacion de dispersion y en el superior los pardmetros de masa. m; en rojo y my en
azul.Tomando 2 =1y v, = 0.7.

4. Interpretacion clasica del acoplamiento

Como el sistema exciton-polaritén es en esencia dos osciladores acoplados fuertemente,
es instructivo analizar el caso cldsico de dos osciladores acoplados de la misma manera.
Esto nos proporcionard mejor entendimiento de lo que estd pasando en el sistema cudntico.
Por lo tanto, es de nuestro interés revisar los mismos casos que en el de los excitones
polaritones: caso coherente sin disipacién de ningun tipo, disipaciones en los osciladores
individuales pero no en el acoplamiento, disipacién en el acoplamiento pero no en los
osciladores individuales y el caso disipativo completo.

Partamos del hecho de que un acoplamiento de cualquier tipo ocurre cuando dos osci-
ladores estdn “conectados” de algin modo, de tal forma que lo que le suceda a uno sea
capaz de afectar al otro. Esta configuracién implica, intrinsecamente, un intercambio de
energia entre cada oscilador [4]]; pero lo relevante serd si la energia total del sistema se
conserva o existen pérdidas debido a algun efecto disipativo. De modo que podemos hacer
la siguiente distincion:

= Acoplamiento coherente: existe un intercambio de energia propio de la configura-
cion del sistema, sin embargo, no existen pérdidas de energia, por lo que el sistema
es conservativo.

= Acoplamiento disipativo: de nuevo son dos sistemas intercambiando energia debi-
do a algtn tipo de interaccion, pero ahora existen pérdidas de energia con el “me-
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dio”, donde el medio podria ser cualquier cosa que no pertenezca a la configuracion
del sistema y en donde existan pérdidas de energia. Para el caso cldsico de dos osci-
ladores, el efecto disipativo aparecerd cuando exista una dependencia de la posicion
o velocidad en el término de acoplamiento.

Consideremos un sistema de dos osciladores, en especifico dos péndulos, acoplados por
un resorte. El que exista un acoplamiento coherente o disipativo dependera de la confi-
guracion del sistema. De manera general podemos escribir las ecuaciones de movimiento
para los grados de libertad ¢ y ¢o, siguiendo las ideas presentadas en [3]], de la siguiente
forma:

G1 +2M161 + wigr — fi(d1,d1) = 2J1wi(d1 — ¢2) + 2T (d2 — 1) (4.1)

P2 + 2o + Wi — fo(P2, P2) = 2Jowa (o — ¢1) + 20 (1 — o) 4.2)

Donde el lado izquierdo de ambas ecuaciones describe a cada oscilador en solitario. Los

términos wy 2 = 4/g/l1 2 corresponden a las frecuencias naturales de cada oscilador, y
éste es el término de restauracion lineal propio de un oscilador. Ademads se incluye una
fuerza de friccion lineal con coeficiente de amortiguamiento A,  para cada oscilador, es-
tos términos serian equivalentes a lo que en los excitones polaritones llamamos v, y 7.
El término con f; » corresponde a términos no lineales, ya sean de restauracién (depen-
dientes de ¢; 2) o de friccion (dependientes de gﬁm), los cuales ignoraremos para mayor
facilidad. Los términos del lado derecho caracterizan al acoplamiento entre ambos oscila-
dores, los primeros términos que son proporcionales a la diferencia entre las coordenadas
(¢1.2 — ¢2.1) corresponden al acoplamiento coherente con constante de acoplamiento .J; .
Por otro lado, los términos proporcionales a la diferencia de velocidades (gz'SLQ — gﬁg,l) ha-
cen que la disipacion en el acoplamiento aparezca, con constante de acoplamiento I’ 5.
En general, estas ecuaciones no tienen solucién analitica, sin embargo, podemos hacer
algunas consideraciones razonables para obtener resultados satisfactorios [25]. En primer
lugar, asumimos que no hay términos no lineales, es decir, f;2 = 0. Ademds, para la
mayoria de situaciones se cumple que A\; o2 > Jio y I'1s < w; 2. Como nos interesa
saber como se comportan los modos que caracterizan al sistema, proponemos la siguiente
solucién con sus respectivas derivadas:

¢1,2 = A1,2€i@t (4.3)
QBLQ = ALQZ‘L:JBMM (44)
b1o = —Aj g0 (4.5)

Donde w son las eigenfrecuencias. Para encontrarlas, sustituimos éstas expresiones en[4. I}
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—Ald;QeWt + W%Alezwt + 2/\1A12'(:J6wx

+2J w1 (Age™t — Aye™h) + 201 (Aice™! — Agie™) =0

—AQ(IJQGZwt + w%Agez‘”t + 2/\2A2idje“"t

+2Jowy (A€t — Age™h) + 205 ( Agice™ — Ajie™) =0

Reescribimos éstas ecuaciones usando la espresion para ¢, 5 y sus derivadas:

—@2p1 + widy + 2M1i0dy + 2J1wi (P — 1) + 2100 (b1 — o) =0 (4.6)

—& s + w%ng + 20000 py + 2Jowa (1 — ¢2) + 2T2i0 (P2 — ¢1) = 0 4.7)

Si identificamos todos los términos que multiplican a ¢, y ¢», podemos factorizarlos y
escribir las ecuaciones en forma matricial, lo cual queda de la siguiente forma:

—0% + w? + 201D — 2w Jp + 2000, 2wy J; — 26T o1\
2(4)2J2 - 2Z@F2 —(:)2 -+ w% -+ 22)\2&] - 2W2J2 + 2Z@F2 (Zﬁg N
4.8)

Dadas las suposiciones que hicimos, podemos aproximar las eigenfrecuencias: wj o +w ~
2w. De tal modo que podemos reescribir la matriz como sigue:

2 - +wi + Z)\l — Jl + zF1 J1 — ’LFl @1
JQ — ZFQ —0 + W9 + Z)\Q — J2 + ZFQ QZ)Q

) =0 (4.9)

Conviene cambiar a un marco de referencia rotado, en el que definimos w,.; = (w1 +
wy) /2, con esto, las eigenfrecuencias en el marco original deben ser modificadas. Para
esto definimos unas nuevas frecuencias en el nuevo marco W' = @ — W .

(wl — Wpep +iA — Jy + il — & Jy —ily ) <¢1) 0
Jg—irg wg—wref+i)\2—J2+iF2—@, ¢2 N
(4.10)
Ahora definimos la desintonizacion entre ambos osciladores A = wy — wy, de tal modo
que:

_l . o . o ~ s
2A+1)\1 J.l +ZF1 w ) ' Jl zFl . N 9251 —0 (411)
JQ—ZFQ §A+Z)\2—J2+ZF2—W gbg

Para darle solucidn al sistema, el determinante de la matriz debe ser cero, por lo que asi
podemos encontrar las eigenfrecuencias. Esto nos arroja una ecuacién de segundo gra-
do para &', la cual después de resolverla y simplificar con algo de édlgebra, nos arroja
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los siguientes resultados para las eigenfrecuencias, recordando el como definimos las fre-
cuencias en el marco de referencia rotado:

. ., 1 . .
Wt = Wref +w = 5 [(w1 + U.)Q) + (Gl — 2)\1) + (GQ — Z)\Q)}

+ ;\/[A — (G1 — i) + (Gy — iX)]2 +4G1G,y  (4.12)

Donde G2 = Jy2 — il'1 2. Con esto ya hemos hallado las frecuencias de ambos modos
para el caso general en donde hay disipacion en el acoplamiento y en ambos péndulos.
La forma de proceder fue proponer una solucién que dependia de las eigenfrecuencias.
De un modo similar podemos proponer una solucion en el marco de referencia rotado
donde la amplitud y la fase dependan explicitamente del tiempo, pero con una evolucién
temporal lenta que permita usar el método de promediado [26]. De tal modo que ¢, 2 =
Aj 5(t)cos|wrest + 61 2(t)]. Pasando al marco rotado, podemos reescribir las ecuaciones
de movimiento en términos de la frecuencia de referencia y un término perturbativo:

P12+ wzef¢172 +hi2=0 (4.13)

Donde:

hio =2\ 2610+ (Wi g — wiep)bre — 21 2w12(21 — d12) — 2T 2(pr2 — do1) (4.14)

Debido a la dependencia de h, 2, puede ser tratado como un término perturbativo. Por lo
tanto, el método de promediado puede ser usado para eliminar las oscilaciones rdpidas y
asf observar el comportamiento cualitativo de A; (¢) y de 6; »(¢) mediante las siguientes
relaciones:

dA; -

= (h1gsinT)
do
d? = (h12cOST)

Donde el promedio estd siendo calculado sobre un periodo 7' = 27 /wyef y T = Wyest +
61 2. Como lo dijimos, A;5(t) y 61 2() varfan lentamente con respecto al tiempo, por lo
que podemos considerar que ambas cantidades son aproximadamente constantes en un
periodo. Sustituyendo nuestra funcion propuesta y su derivada en el término perturbativo
hi 2y considerando que varfan lentamente, podemos evaluar ficilmente el promedio, ya
que los términos involucrardn senos y cosenos, de los cuales es ttil recordar que (sin® 7) =
1/2y (sinTcosT) = 0.

2\ pysinT) = =\ Ay (4.15)

Ya que el promedio sobre un periodo de sen?(7) es 1/2. Para el segundo término tenemos:
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{(W? — wfef)gbl sinT) = (w? — wfef)A1<sin7'cos ) =0 (4.16)

Ya que el promedio de sin 7 cos 7 es cero sobre un periodo. Para el tercer término tenemos:

<2J1W1(¢2 - ¢1) sin (wreft + 91)) = 2J1W1 [AQ <COS (wreft + 02) sin (u},.eft + 81))-
A (cos (Wrept + 01) sin (wre st + 601))

Donde el segundo término es cero, debido a que el argumento en ambas funciones es
igual y como ya vimos, el promedio de sin 7 cos 7 es cero. Para el primero, notemos que
los argumentos difieren por una fase, entonces, al hacer la integral lo que nos queda es lo

siguiente:
) Ay Jywy sin (6, — 0
<2J1w1(¢2 — ¢1) Sin (wmft + 91)> = 2711 ( ! 2) (417)

Wref

Finalmente, para el cuarto término sucede algo similar:

<2F1(¢2 — ¢1) sin 7'> = FlAl - AQFl COS (91 - 02) (418)

De modo que al juntar todos estos términos obtenemos lo siguiente:

d;;l _ _()\1 i Fl)Al _ AQlel S111 ((91 — 92)
Wref

+ Agrl COS (01 — 92) (419)

Como mencionamos, el mismo procedimiento se realiza para As:

dA A in(6; — 0
72:_(A2+P2)A2_ 1 2W2SH1( 1 2)
t Wref

+ Alrg COS (91 — 02) (420)

Acorde a lo obtenido en [3]4]. Ahora, para el caso de ¢, » hacemos un proceso de prome-
diado completamente andlogo:

d(01 — 02) _ —A i lel — JQOL)Q i (A%CUQJQ — A%wljl) COS (91 — 02)
dt Wref AlAQWTef
Al Aol .
_ ( ;122 + 211> sin (0 — 02) (4.21)

Habiendo encontrado las frecuencias y el comportamiento aproximado del sistema me-
diante el método de promediado, ya podemos ver cémo se comportan los 3 casos andlogos
al sistema de excitones-polaritones:

1. Caso sin ningtn tipo de disipacion.
2. Caso con disipacion en cada péndulo.

3. Caso con acoplamiento disipativo.
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Figura 22: Esquema de dos péndulos acoplados mediante un resorte de constante k.

4.1. Casol

Consideremos un sistema de dos péndulos acoplados mediante un resorte de constante k
sin ningun tipo de disipaciéon. Como el que se ilustra en la figura [22] Cuyo lagrangiano
es:

1 . 1 . 1 1 1
L= gmlfﬂﬁ + imlggb% - §m9l1¢? - §mgl2¢§ - 5745[2(9251 — ¢o)? (4.22)

Al calcular las derivadas, las ecuaciones que obtenemos, son:

mlizém +mgly ot + kI (d12 — ¢21) =0 (4.23)

La cual podemos reescribir de una manera mas familiar:

P12+ wiyd12 — 21 pwi(dog — Pr2) =0 (4.24)

Con wy 2 = 1/g/l12 son las frecuencias naturales de cada oscilador. Por otro lado J; » =
ki%/ (Qmwmliz) son las constantes de acoplamiento. Comparando esto con la expresion
4.12), pero con A1 = I'1 o = 0. Por lo que al sustituir esto en la expresion de las eigenfre-
cuencias, tenemos lo siguiente:

1
(Di = 5 {(wl + WQ) + J1 + J2 + \/[Ldg — W1 — J1 + JQ]Q + 4J1J2 (425)

La influencia del acoplamiento es mds notable cerca del punto de desintonizacion cero:
A = wy — wy & 0, en tal caso, las frecuencias son aproximadamente iguales, y por como
esta definida la fuerza de acoplamiento, tenemos que para este caso: J = J; =~ Jo. Con
estas consideraciones, las eigenfrecuencias se pueden escribir de la siguiente forma:
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1
Bx w1 =3 [A+27+ VA2 + 47 (4.26)

Esto lo podemos ver en la figura 23(a)l Lo primero que notamos es el cruce evitado de
ambos modos, caracteristico de un acoplamiento coherente, ademds, dado que existe una
separacion significativa entre las frecuencias de los osciladores desacoplados y las eigen-
frecuencias de ambos modos, decimos que los péndulos estdn fuertemente hibridizados.
Esta hibridacion es lo que produce el cruce evitado entre ambas ramas, w, y w_. La sepa-
racion que existe entre ambos modos en A = 0, la brecha tipo Rabi [27], es proporcional
a la fuerza de acoplamiento, ya que:

P (A=0)—@_(A=0)=2J (4.27)

El que ambos modos se comporten de manera coherente, puede ser identificado facilmente
en el punto A = 0 ya que ahi se cumple que: w_(A = 0) = w; y por la brecha &, (A =
0) = 2J + w;. La primera de éstas condiciones establece una oscilacion en fase de ambos
osciladores, por otro lado, la rama superior corresponde a una oscilacién fuera de fase
con una diferencia de 180°. Evidentemente, este caso de los osciladores acoplados es
completamente extrapolable al caso coherente de excitones-polaritones, con la diferencia
de que en ese caso, la energia de ambos modos jamds se cruzaba con la de los sistemas
desacoplados, 1o que podriamos pensar como una ausencia de oscilacion en fase, ambos
modos corresponden a oscilaciones fuera de fase. También es importante notar que en
este caso, no existe ninguna sefial de degeneracion entre ambos modos, ésta es eliminada
mediante el acoplamiento de ambos péndulos, ain maés, el grado de no degeneracion es
directamente proporcional a la fuerza de acoplamiento, ya que en A = 0 la separacion de
ambos modos es 2J [3]. Una vez mads, es lo mismo que aparecia en el sistema exciton-
polaritén, ya que ahi, la fuerza de acoplamiento ) era directamente proporcional a la
separaciéon de ambos modos, y como veremos en la siguiente seccidn, para que estemos
en el régimen de acoplamiento fuerte, esta constante debe ser mayor que las pérdidas que
tenga el sistema con sus alrededores.

Como mencionamos al inicio de ésta seccion, el acoplamiento entre los péndulos, trae
consigo un intercambio de energia que puede tener pérdidas o no, dependiendo de la
configuracién del sistema. Dado que en este caso no existe ninguna disipacién esperamos
que el intercambio sea de manera totalmente reciproca. Esto lo podemos ver mediante la
aproximacion que hicimos al inicio de esta seccion mediante el método de promediado.
Donde ¢ 5 = Aj 508 (wyept + 01 2). Cercade A ~ 0y para J < w 2, las ecuaciones a
las que habiamos llegado se convierten en:

dA
d;z = AgJJSiIl (9271 — 9172) (428)
d(@l — 02) . (A% — A%)JCOS (91 - ‘92)
i =—-A+ oA, A, 4.29)

Para visualizar la dindmica de ambos osciladores acoplados, nos fijamos en el caso es-
tacionario con A = 0, lo que nos lleva a la condicién de que d(6; — 62)/dt = 0 pero
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A/2]
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&1/ do
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&/ do
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©

Figura 23: (a) Frecuencias de ambos modos como funcién de la desintonizacién, en ana

ranjado se muestran las frecuencias de los osciladores desacoplados. En (b) y (¢) se mues
tran las oscilaciones de cada oscilador para A =~ 0 y tomando J/w; = 0.03.
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no necesariamente df; »/dt = 0, bajo ésta consideracion existen dos opciones para la se-
gunda ecuacion: (A3 — A32) = 0 0 cos(f; — ) =, la primera opcién corresponde a una
oscilacién en fase o fuera de fase por 180°, A; = Ay y Ay = —As, respectivamente. La
segunda opcién corresponde a 6; — 6, = (2n — 1)/7 lo cual corresponde a una oscila-
cion fuera de fase por 90°, ésta es la opcidon que tomaremos, dado que nos proporciona
un mejor entendimiento del acoplamiento [3]]. Con esto, tenemos dos ecuaciones para la
amplitud:

dA
—L = AyJsin(7/2) = AyJ
dt
dA
d—; — AyJsin (—7/2) = —A4,J

Cuyas soluciones son:

Ay = ¢ cos (Jt)
A2 = ¢0 sin (Jt)

Donde hemos tomado como condiciones iniciales: ¢;(t = 0) = ¢o(t = 0) = ¢, debido
a que estamos en el régimen de A = ( entonces w; & wy. También, tomando el valor
promedio de df; »/dt podemos aproximar 0, , ~ Jt de la expresion entonces al
sustituir en la expresion encontramos que:

¢1 = ¢g cos (Jt) cos [(wy + J)i] (4.30)

¢ ~ ¢gsin (Jt) sin [(wy + J)t] (4.31)

Esto se encuentra en las graficas[23(b)]y las cuales exhiben un patrén de batido con
oscilaciones rdpidas de frecuencia w; +.J y una envolvente de frecuencia .J tipo Rabi [27].
La frecuencia de la envolvente es, como se aprecia en las graficas, lo que determina la
transeferencia de energia entre ambos osciladores, fisicamente tiene sentido, ya que la
frecuencia de la envolvente es justo la constante de acoplamiento, y como dijimos antes,
el acoplamiento es lo que permite esa transferencia de energia entre ambos osciladores.
Ademds, en este caso donde la fase es de 90 grados, la conservacion de la energia se
aprecia en las oscilaciones de cada péndulo.

Como conclusion de este caso, el acoplamiento coherente en este sistema nos da un mejor
entendimiento de lo que veiamos en los excitones-polaritones, dado que las tltimas gréfi-
cas las podemos pensar de la siguiente forma: cuando no hay disipacidn, la conservacioén
de la energia entre los polaritones se manifiesta cuando un exciton decae a su estado base
y libera un fotén, o viceversa, cuando un fotén excita a un electron, y debido a que no
hay pérdidas este proceso continuaria de una forma periddica asi como en el caso clasico,
ademads, hemos visto el papel de la constante de acoplamiento, que alld llamamos €2 en la
separacién de ambos modos y en la transferencia de energia.
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4.2. Caso 2

En esta seccion, estudiaremos de nueva cuenta el sistema de dos osciladores acoplados, tal
y como se presenta en la figura [22] con la modificacion de que introduciremos términos
disipativos a cada oscilador, tal vez debido al pivote o el medio en el que se encuentran,
sin embargo el acoplamiento sigue sin tener disipacion. En principio, el lagrangiano de
la ecuacién f.22] es el mismo, con la modificacién de que introducimos la disipacion
mediante la funcién de disipacion de Rayleigh [25]:

F = \ml?¢y + domi2e, (4.32)

Las ecuaciones se obtienen mediante:
d OL oL oF

-7 +—==0 (4.33)
dt 01y 0b15  Odiy
Obtenemos las siguientes ecuaciones:
G124+ 2\ 0012 + w9012 — 2J1 w1 (2,1 — P12) =0 (4.34)

Con las mismas identificaciones que en el caso anterior para w; 2 y Ji 2. Con esto y la
expresion tenemos que los dos modos estdn dados por:

|:(u]1 + CUQ) — Z()\l + )\2) + Jl + J2 + \/[L«)Q — W — Z(/\Q — /\1) — Jl + J2]2 + 4J1J2
(4.35)

De nueva cuenta, trabajamos en A ~ 0 y por lo tanto J = J; ~ J, e introduciendo la
definicién de la desintonizacidn tenemos:

1
o= = {A — i+ 2e) 2 £ 1A =i — AP + 42 (4.36)

Con la férmula ya usada antes [3.4] podemos encontrar la parte real e imaginaria:

1
wi—w1:§A+J

ilJ VIA = (g = M)2 + 4727 44020 — X)2 + A2 — (A — \y)? + 4.7
2 2

1
Awi = 5()\2 + )\1)

% VIA = (g = M)? + 4722 440200 — X)? — (A% — (A — \p)? + 4.J2)
2

Donde Re(Wy) = Wym Yy —Im(&y) = Awy de modo que Wy = wy — iAw,. Con esto,
podemos graficar los dos modos y su parte imaginaria. Esto se muestra en la figura [24]
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2] 0.22]

/2]

0.20]

(Ws—wy) [ 2]
<
W

o) 0.18

A/2) A/2)

() (b)

pi 2.2

/2]

D=
o
Awy [ 2]

(

-4 -2 0 2 4 -4 -2 0 2 4
A/2) A/2]

(©) (d)

Figura 24: Frecuencias de ambos modos, parte real (lado derecho) y parte imaginaria (lado
izquierdo). Donde para (a) y (b) se tomé Ay = 0.1 y para (c) y (d) Ay = 1 y para ambos
casos se tomo que Ay = HA\;.

veoms que para valores pequefios de la disipacion (acoplamiento fuerte), el comporta-
miento es bastante similar al caso anterior, con el mismo gap tipo Rabi y con las mismas
diferencias de fase en A = 0, también aunque la disipacion se incluya el sistema atin no
tiende a la degeneracion. La hibridacion de los dos modos también se ve reflejada en el
ancho de banda (parte imaginaria Aw, ) ya que la evolucion de ésta es atractiva, llegando
a coincidir para A = (. La informacién importante que nos da el ancho de banda es que
a valores grandes de la desintonizacion el comportamiento es asintdtico, de hecho, para
todo valor de A se cumple que Aw, + Aw_ = A; + Ao, esto lo que nos dice es que a
pesar de haber disipacion el sistema sigue siendo cerrado [3]], lo que sucede es que aunque
los osciladores intercambian energia, al no haber una disipacion extra, nuestro sistema se
mantiene acotado por arriba y abajo por A; . Esto también lo observdbamos en el sistema
de polaritones del caso 2, ya que la parte imaginaria mostraba este mismo comportamien-
to en funcion de los valores 7y, y 7.. Por otro lado, la grafica se muestra el caso
para un valor més grande de la disipacidn, lo que sucede es lo que ya habiamos visto en
el sistema cudntico: una disminucién del gap, que ahora podemos darle la interpretacion
de un cambio de fase entre los modos, en comparacién al caso coherente. Ahora, lo que
queremos es ver de nuevo el comportamiento dindmico aproximado de cada oscilador, lo
haremos de la misma forma que en la seccién anterior, con la diferencia de que al incluir
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la disipacion nuestras ecuaciones se convierten en:

dA .
% = —AioAys + Ayy Jsin (051 — 6y 5) (4.37)
d(@l — 92) (A% - A%)JCOS (91 - ‘92)
) A 4.38
dt + 24, A, (4.38)

Bajo el mismo argumento de fijarnos en A = 0 y en un caso estacionario en fase de 90°
tenemos las siguientes ecuaciones para la amplitud:

dAl

— = —-MA — AJ
dt 1411 2
dA2

— = —XA A

o 9oAs + Ay J

Tomando las mismas condiciones iniciales, y asumiendo que ambos coeficientes de amor-
tiguamiento son aproximadamente iguales, podemos proponer soluciones de la forma:

_Outr),

Ay = ¢oe” 2z ‘cos (Jt)

_(A1tX9)

A2 = ¢0€ 2 tSiIl (Jt)

Y usando de nuevo que ¢, » ~ Jt, tenemos:

_Qatro),

&1 = e 2 'cos (Jt)cos [(wy + J)i]

_(a+X9)

Go = goe 2 'sin(Jt)sin [(wy + J)1]

Esto estd en la figura [26] donde las oscilaciones también presentan un patrén de batido
al igual que en el caso anterior, con una envolvente que también depende de la fuerza de
acoplamiento, por lo que esto puede ser descrito por una frecuencia tipo Rabi, el cambio
mas importante es que en este grafico vemos el efecto de los términos disipativos en la
transferencia de energia, lo que podemos ver en como la envolvente decae exponencial-
mente. Este decaimiento, tal y como se ve en las ecuaciones, estd directamente relacio-
nado con los coeficientes de amortiguamiento. Volviendo al sistema de polaritones, esto
que vemos en la figura 26 lo podemos pensar como en la transferencia de energia en el
sistema luz-materia y como la disipacién debido a la configuracion del sistema hace que
esta transferencia se vea afectada en la evolucion temporal. Con este andlisis, no solo
podemos entender mejor el papel de la disipacion de energia en los polaritones, también
entendemos mejor la disminucion de la brecha entre ambos modos y cémo el ancho de
banda estd acotado por los valores de amortiguamiento.
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1/ do

2 [ do

(b)

Figura 25: En (a) y (b) se muestran las oscilaciones de cada oscilador para A =~ 0, toman-
do J/w1 =0.03 y )\g/wl = 5)\1/W1 = 0.005.

4.3. Caso3

En este caso, queremos ver el comportamiento del sistema bajo la accién de un acopla-
miento disipativo, esto en el sistema de dos péndulos equivale a introducir algiin mecanis-
mo que disipe energia en el acoplamiento, en lugar del resorte ideal con el que veniamos
trabajando. Pensemos en algun sistema hidrdulico con algun fluido en su interior que haga
que el sistema disipe energia. Al igual que en el caso anterior, trabajamos con el lagran-
giano [4.22]afladiendo a la funcién de disipacion de Rayleigh [23]:

F = M\ml2¢? + doml22 + vm (¢ — ¢2)? (4.39)

Donde v es la viscosidad del fluido que causa la disipaciéon. Como en el sistema de la fi-
gura estamos considerando que el inico medio de acoplamiento es el disipativo, tenemos
que J; = Jo = 0, esto también nos proporcionard mds informacién acerca de lo que di-
ferencia a ambos tipos de acoplamiento. Lo que obtenemos son las siguientes ecuaciones
de movimiento:

QBI,Q + 2)\1,%51,2 + wi2¢1,2 — 2F1,2(¢52,1 — Q‘SI,Q) =0 (4.40)

Donde la fuerza de acoplamiento es I'y o = v/ liQ. Cerca del punto de desintonizacion
A = 0tenemos [' = I'; = I'y y sustituyendo en la ecuacién4.12} tenemos las frecuencias
de ambos modos:

(Di = ; |:(u)1 + CUQ) — Z()\l + )\2) — 2 £+ \/[Wz — W1 — Z()\Q — )\1)]2 — 4F2] (441)

(:}i—wlz

{A — i+ Ag) — 2T £ [A — i — A2 - 4F2} (4.42)

DN | —
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Figura 26: Esquema de dos péndulos acoplados mediante un sistema hidraulico que pueda
disipar energia.

Podemos volver a aplicar [3.4]y obtener la parte real e imaginaria, considerando que @, =
w4+ — tAwy. Obtenemos lo siguiente:

1
wi—w1:§A

ilJ VIA = (g = \)? — T2 440200 — M) + A2 — (A — Ay)? — 42
2 2

1
Awi = 5()\2 + )\1) + r

ilJ VIA = (g = M)? — A2 4 4A2(0 — A2 — (A2 — (A — A\y)? — 4T2)
2 2

Las graficas de las frecuencias y el ancho de banda para ambos modos se muestran en la
figura[27] A diferencia del acoplamiento coherente, donde ambos modos se repelen, en
este caso observamos una atraccion de ambos modos para cierto rango de la desintoniza-
cidn, tal y como se ilustra en las graficas 27(a), 27(c) y 27(e). Tal fenémeno se conoce
como atraccion de niveles, y es caracteristico del acoplamiento disipativo [3} 4} 2, 22]. A
consecuencia, esto ya no puede ser caracterizado por medio de un gap tipo Rabi, ahora la
atraccion de niveles es entendida por medio de dos puntos en donde las eigenfrecuencias
tienden a ser degeneradas, a esto se le conoce como puntos excepcionales, en analogia
al caso coherente, la separacion entre los puntos excepcionales estd caracterizada por la
fuerza de acoplamiento I'. Los puntos excepcionales se originan debido a la estructura
topoldgica de las eigenfrecuencias complejas [3]]. La repulsion de niveles también se ma-
nifiesta en el ancho de banda, ya que a diferencia del caso coherente aqui observamos una
repulsion en el amortiguamiento. Esto caracterizado por los pardmetros I' + Ay y I + A,
Si nos centramos en las graficas27(a)|y[27(b)] vemos que para |A| > 2T los modos tienen
frecuencias diferentes pero mismo amortiguamiento, y todo lo contrario para |A| < 2T
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En el sistema de excitones-polaritones, especificamente en el caso 1 vimos que en la fi-
gura |/} la atraccion de niveles se manifestaba en esa tendencia de los modos a formar un
“cuello de botella.*"tre ambas ramas, asi como en la parte imaginaria la repulsion entre las
ramas confirma la atraccién de niveles, sin embargo, algo no se explico en la figura(/(a),
ya que aunque el “cuello de botella"se asemeja al comportamiento presentado en la figu-
ra[27], por qué persiste la brecha entre ambos modos y no la degeneracién del caso clasico.
La respuesta es que en el caso clédsico sélo tomamos en cuenta el acoplamiento disipativo
sin el coherente (el acoplamiento del resorte), pero en los excitones-polaritones ademds
del acoplamiento disipativo también esté presente el acoplamiento coherente, por lo tanto,
la brecha entre ambos modos queda descrita por ambas constantes de acoplamiento, g
y Qim, en conlusién, no vemos la degeneracién del sistema en la gréfica por la pre-
sencia de (2. Lo que si vemos es que la tendencia a formar el cuello de botella es justo la
aparicion de los puntos excepcionales, cuya brecha depende directamente de la constante
de acoplamiento disipativo €2;,, que es el pardmetro que variamos para graficar.

Para ver el comportamiento dindmico de estos sistemas, de nueva cuenta recurrimos al
método de promediado, cuyas ecuaciones antes establecidas, se transforman para nuestro
caso en:

dALQ
dt

= —()\1,2 + F)ALQ + AQJF COS (01 — 62)

d(@l — 92) . AlF AQF .
T = —A— (142"‘%11) Sln(91 —62>

De acuerdo a estas ecuaciones, para el caso estacionario con A = 0 la diferencia de
fase entre los péndulos es 0° o 180° lo cual hace que la expresion para la amplitud se
simplifique bastante:

dA

— L= (MDA + AT
dt

dA

TtZ - —()\2 + F)AQ + AJ‘

La cual podemos resolver si la escribimos en forma matricial y encontramos los eigenva-
lores por medio de su ecuacidn caracteristica:

AN (M +T r A
<A2> = ( T - +r> <A2> (4.43)

Lo cual arroja los siguientes valores:

20 — (M1 + o) £ /(M — Xa)? +417 x4 ),
2 T2

T = FT(1£1)  (444)
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Figura 27: Frecuencias de ambos modos azul para el modo inferior w_ y rojo para el
superior w., parte real (lado derecho) y parte imaginaria (lado izquierdo). Donde para
(@A) y (b) se tomé6 AN = Xy — Ay = 0, para (¢) y (d) AN = 0.05T" y para (e) y (f)
AX = 0.5I' ademas, para todas las graficas A\; = 0.02". En (a), (c) y (e) las lineas
punteadas representan las frecuencias de los osciladores desacoplados. En (b), (d) y (f)
las lineas negras punteadas, corresponden a I' + Ay y ' + As.
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Donde hemos usado el hecho de que A » es muy pequefio y que al estar en acoplamiento
fuerte T'? /A1 Ay > 1. Tomando las condiciones iniciales ¢; (t = 0) = ¢g y ¢o(t = 0) = 0:

A1+2Ao ¢

Al = Qﬁoei 2 (1 + 6721—%)/2

A1+

AQ = ¢06_ 2 t(l — G_QFt)/Q

Como estamos en A = (), las soluciones aproximadas son:

b1 = QZ;oe Al;A”(l + e 2 cos (wit) (4.45)

o = Q;Oe_ LerAQt(l — e ") cos (wit) (4.46)

Estas funciones se muestran en la figura 28 Al igual que en el caso 2 los pardmetros
A1,2 contribuyen con un decaimiento exponencial, pero ademads, en este caso tenemos una
nueva fuente de disipacion debida al acoplamiento, como asumimos I' > )\, » el decai-
miento debido al acoplamiento supera a las pérdidas de cada sistema por separado. Esto
tiene como consecuencia un decaimiento rdpido en ¢; y un incremento abrupto en ¢,
lo cual se muestra en la figura 28] Lo mas destacable es que al incluir el acoplamiento
disipativo, el decaimiento rdpido hace que ambos péndulos entren en un estado de sincro-
nizacion, teniendo una misma ampiltud y fase, a diferencia del acoplamiento coherente,
donde no se observa ninguna tendencia hacia la sincronizacién [3, 4]. La sincronizacion
es un fendmeno presente en la dindmica de sistemas fisicos, quimicos y bioldgicos [[7];
lo que acabamos de ver es como puede ser inducida mediante el acoplamiento disipati-
vo, esto se puede entender con el siguiente ejemplo: si tenemos dos metrénomos puestos
sobre una misma superficie, en principio con diferente frecuencia, la superficie actuard
como una reserva comun de disipacién para ambos sistemas, por lo que al dejar correr
un tiempo suficientemente grande, ambos metronomos, debido a la reserva compartida
entrerdn en sincronizacion. En el sistema de polaritones esto puede ser extrapolado al ba-
o compartido por ambas partes, es decir, debido al acoplamiento disipativo, se induce la
sincronizacion en el sistema.
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Figura 28: En (a) y (b) se muestran las oscilaciones de cada oscilador para A = 0, to-
mando I'/w; = 0.03 y A\y/w; = 5A;/w; = 0.005, esto para estar dentro del rango de
acoplamiento fuerte.

5. Conclusiones

A lo largo de este trabajo, vimos que la inclusion del acoplamiento disipativo provee un
mejor entendimiento de los polaritones expuestos a fuentes de disipacién. Principalmen-
te, el acoplamiento disipativo tiene implicaciones importantes en el sistema: aparicién de
masa negativa debido a la relacion de dispersion anémala, atraccién de niveles entre am-
bos modos, los puntos excepcionales que hacen al sistema tender a la degeneracién y la
sincronizacion que extrapolamos del anélisis del caso cldsico. Del mismo modo, el anéli-
sis del caso cldsico nos da una mejor interpretacién acerca de fenémenos peculiares en el
sistema cudntico: cambio en la brecha entre los modos y la masa efectiva, interpretacion
de la masa efectiva cero, el gap tipo Rabi que aparece en el caso coherente y la evolu-
cién dindmica de ambos osciladores dependiente de la fuerza de acoplamiento. El trabajo
futuro consiste en una aproximacion al acoplamiento disipativo mediante la teoria input-
output y plantear las ecuaciones relevantes que son dependientes del tiempo [28, 29]. Asi
como entender mejor qué significa que haya sincronizacion en un sistema cudntico, que
no es tan intuitivo como en el sistema clasico.
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