
División de Ciencias Básicas e Ingeniería

Posgrado en Física

Propuesta de Investigación Doctoral

CICATRIZACIÓN CUÁNTICA EN
BILLARES SUAVES

REALIZADO POR: M. en C. Adán González Andrade

MATRÍCULA: 2221801165

PARA SUSTENTAR EL Examen Predoctoral

ASESOR: DR. MIGUEL ANGEL BASTARRACHEA MAGNANI

COORDINADOR: DR. ORLANDO GUZMÁN LÓPEZ

28 DE MARZO DE 2025

IZTAPALAPA, CIUDAD DE MÉXICO



ÍNDICE ÍNDICE

Índice

1. Introducción 2
1.1. Caos clásico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Caos cuántico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Billares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Billares suaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5. Billares cuánticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6. Cicatrización cuántica . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7. Cicatrización de muchos cuerpos . . . . . . . . . . . . . . . . . . . . . . 6

2. Objetivos 8
2.1. Objetivo general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Objetivos específicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Metodología 8
3.1. Solución de sistemas dinámicos . . . . . . . . . . . . . . . . . . . . . . 8
3.2. Técnicas de análisis del caos y regularidad clásicos . . . . . . . . . . . . 9
3.3. Técnicas: funciones de onda y espectros cuánticos . . . . . . . . . . . . . 10
3.4. Técnicas para el cálculo de cicatrización . . . . . . . . . . . . . . . . . . 11

4. Resultados Esperados 11

5. Avances 12

Bibliografía 16

Calendario 21

1 PROYECTO PREDOCTORAL



1 INTRODUCCIÓN

1. Introducción

En la década de los 60, el meteorólogo Edward Lorenz publicó uno de los artículos cientí-
ficos más citado en la actualidad [1, 2], donde se estudió la dinámica de un fluido viscoso
que resulta de la convección entre dos placas horizontales a diferente temperatura. Como
resultado obtuvo unas ecuaciones diferenciales que son altamente sensibles a las condi-
ciones iniciales. Además, encontrando que algunas trayectorias tienden a converger hacia
una región específica del espacio fase, independientemente de la elección de condición
inicial, esto es lo que ahora se conoce como el atractor que lleva su nombre. Su inves-
tigación se convirtió en un paradigma para el entendimiento del caos, transformando la
visión de la comunidad científica sobre la predictibilidad en sistemas naturales complejos.
En 1972 Lorenz dio una charla titulada: Predictibilidad: ¿El aleteo de una mariposa en
Brasil puede ocasionar un tornado en Texas? Este suceso fue un parteaguas pues, desde
aquel momento hasta la actualidad, el término caos ha logrado permear en la población
no científica a una escala muy amplia [2]. Ahora la referencia al efecto mariposa se utiliza
como una metáfora accesible para explicar a audiencias ajenas al ámbito científico lo que
se conoce como la teoría del caos. Lorenz intentó varias veces dar una definición de este
concepto, bajo su visión: un sistema manifiesta caos cuando el estado presente determina
completamente el estado futuro, pero el estado aproximado presente es insuficiente para
determinar el estado aproximado en el futuro distante [3].

1.1. Caos clásico

Sin embargo, los primeros trabajos relacionados con el concepto de caos se remontan al
trabajo del matemático Henri Poincaré [4], que prestó especial atención al sistema de tres
cuerpos: Tierra-Sol-Luna; enfocándose en el comportamiento de órbitas generadas por
conjuntos de condiciones iniciales. Esto le permitió mostrar la existencia de trayectorias
de gran complejidad, que en la actualidad denominamos órbitas caóticas [5]. Un sistema
dinámico puede definirse como un descripción matemática determinista para la evolución
del estado de un sistema hacia adelante en el tiempo. Donde el tiempo puede ser tanto
una variable continua (al sistema se le suele llamar flujo), o bien, discreta [5]. Así, se
denomina órbita (inspirado históricamente en la mecánica celeste) a aquella trayectoria
(cerrada o abierta) en el espacio fase (o de configuraciones) que es resultado de la evo-
lución de un sistema dinámico dado un conjunto de condiciones iniciales. Cabe destacar,
que las órbitas pueden ser continuas, discretas, finitas o infinitas [6]. Cuando las solu-
ciones a las ecuaciones que rigen a un sistema dinámico presentan pequeñas variaciones
ante pequeños cambios en las condiciones iniciales, se dice que las órbitas son regulares
o normales [7].

Los sistemas con dos o más grados de libertad tienen órbitas periódicas que se clasifi-
can de acuerdo con su estabilidad, es decir, según cómo responde el sistema a pequeñas
perturbaciones de las trayectorias. Cuando la dinámica es caótica, se espera la aparición
de órbitas periódicas inestables (UPO, por sus siglas en inglés). Aunque también pueden
presentarse en sistemas regulares, no es típico [8]. La información que se obtiene de este
tipo de órbitas puede utilizarse para describir propiedades estadísticas del caos como ex-
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1.2 Caos cuántico 1 INTRODUCCIÓN

ponentes de Lyapunov, entropías o dimensiones fractales; incluso aspectos fundamentales
como la estructura jerárquica del caos y las transiciones caos-regularidad [9–11].

Si se considera un sistema dinámico, tal que su estado presente exacto determina comple-
tamente todos los estados futuros, se dice que el sistema dinámico es determinista [12].
Entonces, el término caos dinámico, caos clásico o simplemente caos, se utiliza para des-
cribir el comportamiento irregular de sistemas dinámicos, el cual surge de una evolución
temporal estrictamente determinista, sin ninguna fuente de ruido o estocasticidad externa.
El estudio contemporáneo del caos es de utilidad para entender cómo emergen patrones
y orden aparente en sistemas que inicialmente parecen completamente aleatorios, dentro
de diferentes disciplinas científicas como la física, química, biología y la ingeniería [13].
Y es que los sistemas en la naturaleza exhiben tanto estructuras ordenadas como caóticas,
así, el control y entendimiento del origen de la aleatoriedad son temas relevantes a la fecha
para la ciencia y las ingenierías [14].

1.2. Caos cuántico

Cuando los efectos cuánticos son relevantes en un sistema físico, la noción clásica de
caos (en términos de sensibilidad a condiciones iniciales definidas con precisión arbi-
traria) pierde sentido, ya que los estados cuánticos están descritos por distribuciones de
probabilidad (funciones de onda) y no por trayectorias deterministas. En estos casos, uno
se ve naturalmente llevado a buscar otros criterios genuinamente cuánticos que permitan
distinguir entre tipos de dinámica, como lo puede ser la estadística de niveles energéti-
cos [15]. Así, el caos cuántico aparece como la disciplina encargada de estudiar los rasgos
de los sistemas cuánticos cuyos análogos clásicos son caóticos y de identificar los aspectos
propios de los sistemas cuánticos no integrables. Debido al principio de correspondencia
(el cual demanda que en la región semiclásica, que son escalas largas comparadas con la
longitud de onda de De Broglie, la mecánica cuántica continuamente recupera la mecánica
clásica [16]), en el límite clásico, los aspectos que inducen una dinámica caótica deberían
prevalecer en los sistemas cuánticos [17]. No obstante, queda mucho por entender acerca
del papel del caos en la correspondencia clásico-cuántica. Por esta razón, se eligen los
billares como objeto de estudio, pues son un modelo lo suficientemente simple para ser
investigado por métodos matemáticos pero que demuestra un comportamiento típico de
movimiento irregular [18], además de que históricamente se han utilizado para modelar
una amplia gama de fenómenos físicos [19].

1.3. Billares

Los sistemas conocidos como billares son modelos paradigmáticos para explorar el caos
y sus propiedades. Su estudio se remonta al trabajo de Jacques Hadamard que, en 1898,
propuso un sistema que consiste en una partícula puntual de masa m que se mueve li-
bremente, es decir, sin fuerzas externas, a lo largo de una superficie bidimensional dada
Ω [20]. Entonces, si consideramos que en la frontera ∂Ω hay paredes sólidas (equivalente
a un pozo de potencial infinito), podemos definir un billar plano de paredes duras como
la región Ω dentro de la cual, una partícula que evoluciona bajo la acción de un potencial,
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puede colisionar con la frontera ∂Ω de forma instantánea y especular, es decir, siguiendo
la regla de que el ángulo de incidencia es igual al ángulo reflejado. La evolución de una
partícula dentro de un billar de paredes duras no es continua, pues dentro del dominio
se tiene la evolución libre y, en el momento en que ocurre una colisión, los valores de
momento cambian instantáneamente pincidente → preflejado. En general, la evolución de una
partícula durante un tiempo t en un billar de paredes duras equivale a la composición de
mapeos continuos J y discretos J, a lo largo de intervalos τi = ti+1 − ti, con i denotando
la i-ésima colisión [21].

Los billares buscan modelar diversos fenómenos físicos en los cuales una o más partí-
culas se mueven dentro de un contenedor y colisionan con sus paredes. Las principales
propiedades de la dinámica de estos sistemas físicos están determinadas por la forma de
las paredes del contenedor [22]. Por ejemplo, si la frontera es un círculo o una elipse
entonces el sistema es integrable (regular) [23]. Sin embargo, una frontera deformada
conduce a un sistema altamente caótico (debido a los cambios de signo en la curvatura);
como lo mostró Yakov Sinai con su billar [24] y posteriormente reafirmado por Leonid
Bunimovich [25].

Por otro lado, si se estudia a los billares más como modelo físico que matemático, hay que
tomar en cuenta que las partículas no experimentan colisiones instantáneas, sino que son
desviadas progresivamente debido a la acción de un campo [26]. De ahí es que surge el
concepto de billar suave como un modelo un tanto más realista que un pozo de potencial
infinito.

1.4. Billares suaves

Como se mencionó antes, los billares de paredes rígidas tienen la particularidad de intro-
ducir una discontinuidad en la evolución del espacio fase. Un enfoque alternativo, emplea-
do para estudiar sistemas donde la suavidad es físicamente relevante, consiste en introdu-
cir suavidad en la frontera del billar. Al hacerlo, la partícula cambia su momento de forma
continua durante un lapso, y luego continúa su evolución, evitando las discontinuidades
en el espacio fase y permitiendo así la descripción completa de la dinámica resolviendo
las ecuaciones de movimiento de Hamilton. Por una parte, los billares de paredes suaves
son de interés teórico ya que su dinámica puede analizarse de manera exhaustiva mediante
las herramientas de la mecánica Hamiltoniana, gracias a la continuidad de sus trayecto-
rias. Además, se ha mostrado que la suavidad en un billar tiene un efecto estabilizador en
la dinámica [27]. Así, se pueden estudiar propiedades dinámicas adicionales que aportan
riqueza al entendimiento del caos y la regularidad.

El punto de partida para modelar un billar suave es escribir una función Hamiltoniana
para un pozo de potencial que es suave en su frontera, es decir,

H = 1
2(p2

x + p2
y) + V (x, y;h) , (1.1)

donde h es un nuevo parámetro el cual modula la dureza del billar [28]. Además, el po-
tencial viene dado como
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V (x, y;h) = erf{h (∂Ω)} , (1.2)

donde ∂Ω corresponde a la ecuación en forma implícita de la curva para la frontera y
erf denota a la función error erf(x) = 2π−1/2 ∫ x

0 e
−s2
ds. Cabe destacar que en la literatura

pueden encontrarse diferentes perfiles para suavizar un billar, como por ejemplo funciones
polinomiales [29]. El parámetro de dureza toma sentido al revisar sus casos límite, pues
cuando h → 0 se tiene la situación donde la contribución de las fronteras es nula y se
recupera el potencial de una partícula libre. Mientras que en el límite h → ∞ se tiene un
pozo de potencial infinito: caso de paredes duras. Así, los billares suaves resultan en una
extensión natural de los billares clásicos. En este proyecto se busca extender aún más este
concepto para también modelar fenómenos cuánticos.

1.5. Billares cuánticos

Se define un billar cuántico plano (en el sentido de paredes duras) como un pozo bidimen-
sional con paredes infinitas y potencial nulo en su interior [30]. La posición de las paredes
queda determinada por una curva cerrada C, y en el interior por un dominio D haciendo
que este sistema sea ligado para cualquier energía. Ahora, la dinámica está regida por la
ecuación de Schrödinger en el interior del pozo que se anula en el contorno. Para el caso
estacionario, si se expresa la energía en términos del número de onda k =

√
2mE/ℏ, el

problema se reduce a resolver la ecuación de Helmholtz con condición de Dirichlet en la
frontera

∇2φ = −k2φ en D , φ = 0 en C. (1.3)

En un billar cuántico comúnmente se estudia el espectro, el cual consiste en un número
infinito de valores propios 0 > k2

1 ≥ k2
2 ≥ ... , con sus respectivas funciones propias

asociadas ϕ1, ϕ2, ....

Las funciones propias asociadas ψ1, ψ2, ψ3, ..., pueden ser normalizadas y constituyen un
conjunto ortonormal completo para las funciones de cuadrado integrable, donde cada fun-
ción es infinitamente diferenciable en los puntos interiores. El conjunto de puntos donde
cada función propia ψi se anula es llamado el conjunto nodal, el cual consiste de curvas
infinitamente diferenciables en el interior de V . En el caso de una membrar oscilante, por
ejemplo, las curvas nodales aparecen donde la membrana se mantiene en reposo durante
una eigenvibración [31]. Cuando m curvas nodales se cruzan en un punto, lo hacen for-
mando ángulos iguales π/m [30]. En ese sentido, un gran reto para la resolución de un
billar cuántico duro (pozo de potencial escalonado) es el de incorporar en el modelo un
ensamble de funciones adecuadas que respeten las condiciones de frontera del billar [32].

A la fecha, los billares cuánticos han sido estudiados exhaustivamente. Por un lado, hay
diversas investigaciones teóricas, por ejemplo, para la descripción del caos en diferentes
geometrías [33], el estudio de fenómenos de transporte [34, 35], el modelaje de fluidos
cuánticos como el de 4He [36] o para estudiar el principio de correspondencia clásico-
cuántico [37, 38]. A su vez, se han realizado implementaciones experimentales con bi-
llares de microondas [39, 40], billares nanoscópicos en monocapas de dicalcogenuros de
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metales de transición (TMD) para el estudio la estabilidad de estados cristalinos [41], bi-
llares opto-atómicos [42, 43], billares de fluidos polaritónicos [44]. Sin embargo, hay una
dirección de estudio para estos sistemas que que ha sido escasamente estudiada y es de
particular interés para este proyecto: la cicatrización cuántica.

1.6. Cicatrización cuántica

Décadas atrás, Michael Berry [45] conjeturó que las funciones propias de sistemas cuán-
ticos cuyo análogo clásico es caótico deberían parecerse localmente a una superposición
de ondas planas. Con esto, la función de onda es modelada como

ψ(r) =
n∑
i

ci sin(kir + ϕi) , (1.4)

donde ki son vectores de onda uniformemente distribuidos en todas las direcciones con
una magnitud fija k, ϕi son fases aleatorias uniformemente distribuidas y ci son coeficien-
tes aleatorios uniformemente distribuidos en el intervalo (−1, 1) y normalizados de forma
que

∫
V |ψ|2dr = 1 [17].

Para el problema de un billar de Bunimovich cuántico, Steven McDonald y Allan Kauf-
man abordaron la solución de la ecuación de Helmholtz (1.4) de forma numérica, donde
identificaron curvas nodales que son afectadas por órbitas periódicas [46]. Concluyendo
que existe una repulsión mutua entre valores propios vecinos y una direccionalidad alea-
toria para las curvas nodales. Inspirado por este trabajo, Eric Heller [47] bautizó estas
huellas generadas por las órbitas periódicas inestables como cicatrices cuánticas. Así, de
acuerdo con Heller [48] se establece la siguiente definición: Un estado propio cuántico de
un sistema que es clásicamente caótico tiene una cicatriz de una órbita periódica inestable
si su densidad en las variedades clásicas, cerca de la órbita periódica, difiere de forma
significativa de la densidad estadísticamente esperada.

Un aspecto relevante de los billares cuánticos es que los estados propios están influencia-
dos no sólo por la superficies de energía, sino también por las órbitas cerradas del sistema
clásico. En otras palabras, las órbitas de alguna manera, dejan una huella que persiste a
través de miles de estados y probablemente sobreviven hasta el límite clásico [49]. La
cicatrización cuántica se ha estudiado en billares desde 1984 [47] hasta la fecha [50, 51].
Tomando diferentes geometrías como el estadio de Bunimovich [52] y el billar de Si-
nai [53]. Pero también otras menos convencionales como la geometría triangular [54], de
diamante [55] o hasta una frontera ondulada [56]. Sin embargo, el fenómeno de la cica-
trización es más general que el caso de un billar y en ello recae que sean fundamentales
para el entendimiento de los sistemas cuánticos.

1.7. Cicatrización de muchos cuerpos

Debido a las complicadas interacciones entre sus componentes, los sistemas cuánticos de
muchos cuerpos no son típicamente integrables y exhiben caos. El caos se piensa como un
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Figura 1: Arreglo experimental de una cadena de 51 átomos visualizado via fluorescen-
cia. Fila superior: antes de aplicar un pulso adiabático. Tres filas inferiores: instancias
separadas después del pulso. Los circulos rojos indican ausencia de átomos atribuida a
excitaciones de Rydberg. Las elipses azules indican pares de átomos que funcionan como
paredes ya sea por encontrarse en el mismo estado o por estar en su estado base. Figura
tomada de [58].

mecanismo que hace posible que los sistemas cuánticos alcancen estados de equilibrio y
térmicos, como sucede en el caso clásico. Es por eso que en general satisfacen la llamada
Hipótesis de Termalización de Eigenestados (ETH, por sus siglas en inglés) [57]. Gracias
a un importante experimento en un simulador de cuántico de un átomo de Rydberg el
fenómeno de cicatrización cuántica de muchos cuerpos ha atraído la atención en la última
década [58] (ver figura 1). El comportamiento que observaron no pudo ser caracterizado
por un ensamble térmico simple pues sus observaciones sugirieron que el sistema no ter-
maliza dentro de las escalas de tiempo que esperaban, lo cual resulto ser inesperado ya que
su sistema no se asemeja a ningún sistema integrable conocido. Fueron en trabajos poste-
riores, donde se observó que esto se debía en gran medida a estados propios que tendían
a distribuirse de forma inesperada, análogamente a los estados cicatrizados que se con-
centraban en la vecindad de órbitas periódicas inestables clásicas [59], de ahí que surge el
concepto de cicatriz cuántica de muchos cuerpos. Sin embargo, para justificar la analogía
con las cicatrices en billares cuánticos, debería existir alguna noción de trayectoria clásica
subyacente a los estados propios. Encontrar tal trayectoria, y más generalmente el contra-
punto clásico de un sistema cuántico de muchos cuerpos, es de hecho uno de los objetivos
centrales del campo del caos cuántico [60]. Además de tener implicaciones profundas en
el entendimiento del caos en sistemas cuánticos, este fenómeno resulta importante pues
las cicatrices cuánticas de muchos cuerpos permitirían transportar y proteger información
en sistemas cuántico complicados, lo que ha motivado investigaciones sobre su posible
aplicación en información cuántica [61].

A pesar de existir estudios sobre cómo la suavidad afecta las propiedades de los billares
cuánticos, éstos son escasos [62]. Incluso los billares suaves clásicos no se han estudiado
a profundidad, por ejemplo, hay geometrías típicas del caso de paredes duras a las que no
se les ha estudiado el efecto de un potencial suave en su frontera. Además del efecto de
otros aspectos que naturalmente surgen en billares suaves, como la energía del sistema o
la disipación de partículas. Por tanto, se pretende estudiar el efecto de la suavidad en los
billares cuánticos y su conexión con aspectos fundamentales de la cicatrización de uno y
de muchos cuerpos.
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3 METODOLOGÍA

2. Objetivos

Para delimitar el alcance de este proyecto se delimitan los siguientes objetivos.

2.1. Objetivo general

El objetivo general de este trabajo es estudiar la presencia y robustez de cicatrices cuánti-
cas en billares suaves con geometrías tradicionales o modulables.

2.2. Objetivos específicos

Resolver la dinámica de billares duros y billares suaves, así como caracterizar sus
regímenes de regularidad y caos como función de los parámetros relevantes del
sistema.

Estudiar y calcular cicatrices cuánticas y UPOs en billares cuánticos tradicionales
o modulables y caracterizar su dinámica.

Cuantizar billares suaves con geometrías tradicionales o modulables y caracterizar
su dinámica.

Aprender las técnicas de análisis de caos cuántico para el estudio de las propiedades
de los billares cuánticos suaves.

Confirmar la presencia de cicatrización cuántica en billares cuánticos suaves con
geometrías tradicionales o modulables.

Explorar la posibilidad de extender el estudio de cicatrices cuánticas en billares
cuánticos suaves en el terreno de sistemas cuánticos de muchos cuerpos.

3. Metodología

En esta sección, se presentan las herramientas teóricas y numéricas necesarias para la
realización de este proyecto.

3.1. Solución de sistemas dinámicos

Se usará la herramienta numérica desarrollada en el lenguaje Julia para mi tesis de maes-
tría como punto de partida [3]. La cual permite evolucionar partículas en un billar suave
clásico dadas las ecuaciones de movimiento de Hamilton correspondientes una curva dife-
renciable como frontera, como en el caso, por ejemplo, de una circunferencia, una elipse
y una squircle. Un aspecto a resaltar es que este herramienta permite integrar ecuaciones
diferenciales con rigidez (stiffness), lo cual es uno de los principales problemas a tratar
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cuando se trabaja con billares suaves [27]. Esta rigidez se traduce en órbitas que tienden a
curvas no diferenciables (poco suaves). Entonces, para valores de dureza suficientemente
grandes, las ecuaciones de movimiento no se pueden integrar por métodos convenciona-
les, como puede serlo Runge-Kutta de orden 4 [63]. Con lo anterior, será posible explorar
diferentes geometrías de interés para este proyecto.

Como preámbulo para el estudio de billares suaves cuantizados se hará uso de algunas
técnicas bien conocidas para el estudio de caos cuántico, tales como los indicadores es-
pectrales (distribuciones de primeros vecinos [64], factor r [65]) e indicadores dinámicos
de caos [66]. Para esto, se deben identificar las órbitas periódicas inestables, que se re-
lacionan directamente con el fenómeno de cicatrización. Además, se pretende extender
el estudio a los sistemas de muchos cuerpos. Para esto, se indagará en los métodos más
adecuados para estudiar el caos en estos sistemas.

3.2. Técnicas de análisis del caos y regularidad clásicos

Para estudiar de forma cualitativa la dinámica de un sistema y poder identificar regiones
del espacio fase que presentan caos, se suele recurrir a una técnica denominada méto-
do de la sección transversal de Poincaré o, simplemente, secciones de Poincaré (PSOS,
por sus siglas en inglés). Si bien puede utilizarse en sistemas de dimensión mayor, es
particularmente útil en sistemas con dos grados de libertad [67]. Esta técnica consiste
en transformar una evolución continua en un mapeo discreto, donde cada punto de és-
te se representa como una perforación de una superficie de energía constante por dicha
trayectoria en el espacio fase. Esto facilita la identificación de órbitas periódicas y cuasi-
periódicas que son clave para comprender la naturaleza del comportamiento caótico [68].
A pesar de la utilidad de esta herramienta, la información que se le puede recuperar es
únicamente cualitativa.

Para un análisis cuantitativo del caos, se suele recurrirse a los exponentes de Lyapu-
nov [19, 69, 70]. Esta herramienta proviene de estudiar el ritmo al que dos condiciones
iniciales infinitesimalmente cercanas se alejan a tiempos largos. La naturaleza de esta
cantidad surge de linealizar la dinámica, donde se observa que

|u(t)| ≈ |u(0)| eλt , (3.1)

donde u(t) = (q(t); p(t)) es un vector del espacio fase que cuantifica la separación entre
dos órbitas, inicialmente cercanas, al tiempo t. Donde a la cantidad λ se le llama exponente
de Lyapunov.

No sólo hay un exponente de Lyapunov, sino un espectro cuya dimensión es la misma que
la del sistema dinámico de estudio. Cada exponente λi del espectro puede interpretarse
como la razón de crecimiento promedio de los ejes principales de una elipsoide infinite-
simal, que rodea un punto del espacio fase y evoluciona de acuerdo a una regla dinámica
dada (ecuaciones de movimiento). Por tanto, el espectro de Lyapunov describe el ensan-
chamiento y contracción característico del flujo en el espacio fase [21]. En un espacio
fase como el de un billar (con dos coordenadas de posición y dos de momento) todos los
vectores de perturbación crecen asintóticamente con el máximo exponente de Lyapunov
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del espectro λ1. Además, se cumple en este caso que λ2 = −λ3 y λ4 = −λ1 [71], lo cual
proviene de la simetría de pares de Smale. Para sistemas Hamiltonianos (que conservan
energía), se tiene que λ2 = λ3 = 0 [72].

Aunque el espectro de Lyapunov se puede utilizar para proporcionar una definición cuan-
titativa del caos, el máximo exponente de Lyapunov λ1 ≡ λ, es el más importante de todo
el espectro. Pues tanto la magnitud como el signo de esta cantidad revelan información
sobre la dinámica del sistema estudiado. Tomando como referencia la ecuación (3.1), se
discuten los tres posibles valores de esta cantidad:

1. (λ < 0). Aquí eλt decrece hacia cero a medida que t aumenta. Esto significa que la
magnitud de cualquier perturbación inicial |u(0)| tiende a disminuir exponencial-
mente rápido hacia cero. En términos de la dinámica del sistema, las trayectorias
que inicialmente están cerca una de la otra tienden a converger con el tiempo. El sis-
tema, por lo tanto, tiene la capacidad de retornar a un estado estable después de ser
perturbado, y pequeñas variaciones o errores tienden a amortiguarse con el tiempo.
Entonces un exponente de Lyapunov negativo mediría el ritmo al que un sistema se
aproxima a algo típico de un punto particular: un atractor regular [7].

2. (λ = 0). Si eλt = 1, independientemente del valor de t, significa que la magnitud
de cualquier perturbación inicial |u(0)| se mantiene constante a lo largo del tiempo.
Desde el punto de vista dinámico, las trayectorias que inicialmente están cerca una
de la otra no convergen ni divergen significativamente en el tiempo. Este es el caso
de movimiento regular [73].

3. (λ > 0). Cuando eλt aumenta exponencialmente a medida que t se hace grande, en-
tonces la magnitud de cualquier perturbación inicial |u(0)| crece exponencialmente
con el tiempo. Así, las trayectorias que inicialmente están cercanas comienzan a
divergir rápidamente una de otra. Esto cuantifica el promedio de crecimiento de una
desviación infinitesimal de una órbita regular a partir de una perturbación. En este
caso se dice que el movimiento es caótico [7].

Además de las secciones de Poincaré y los exponentes de Lyapunov existen otros métodos
que se revisarán para estudiar su viabilidad como cuantificadores el caos en un billar, como
lo puede la caracterización de parámetros no lineales [74] o la entropía de Kolmogorov-
Sinai, que caracteriza el grado de inestabilidad hiperbólica en sistemas dinámicos y que
puede relacionarse con coeficientes de transporte en situaciones fuera de equilibrio [75].
Esto permitirá estudiar aspectos más profundos de la dinámica de un sistema caótico.

3.3. Técnicas: funciones de onda y espectros cuánticos

Se buscará la forma óptima de cuantizar un billar suave. Comenzando por implementar
los métodos de Eduardo Vergini [30] para billares duros, que consisten en resolver la
ecuación de Schrödinger en pozos de potencial con condiciones de contorno adecuadas.
También se estudiarán los métodos semiclásicos con integrales de camino, consideran-
do las reglas de cuantización semiclásica tipo Bohr-Sommerfeld-Einstein-WKB que son
un estándar [76]. También se estudiará la teoría de Gutzwiller sobre órbitas periódicas,
donde se remplazan las integrales de camino por una suma infinita sobre todas las órbitas
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periódicas, permitiendo con esto que el espectro de energía quede determinado completa-
mente por cantidad puramente clásicas, como lo pueden ser las longitudes de las órbitas
periódicas y sus exponentes de Lyapunov [77].

3.4. Técnicas para el cálculo de cicatrización

En principio, se buscará caracterizar las familias de órbitas en los billares de este proyecto
para investigar la presencia de cicatrices de trayectorias periódicas en las funciones pro-
pias a partir de las técnicas propuestas por Vergini [30]. Posteriormente, se implementará
la evolución de paquetes de onda de acuerdo a los planteamientos de Heller [48], tomando
en cuenta los tiempos de recurrencia τ , que son una función de la matriz de estabilidad
y la forma inicial del paquete de onda (estos tiempos están ponderados por el exponente
de Lyapunov). También se explorará la viabilidad de usar un análisis puramente cuántico,
como lo pueden ser funciones de Husimi para analizar localización en el espacio fase [78].

4. Resultados Esperados

Existen diversas metodologías para detectar y clasificar UPOs, ya sea haciendo aproxima-
ciones lineales, o bien, usando la fuerza bruta de cómputo. Aún así, estos métodos suelen
ser generales para sistemas dinámicos y no han sido desarrollados en plenitud para billa-
res suaves. En este trabajo se espera encontrar el método óptimo para caracterizar familias
de UPOs en el caso de billares suaves y entender su relación con el parámetro de dureza
y la geometría del potencial. Con lo anterior, se planea identificar los cuantificadores de
caos clásico óptimos para el caso de un billar suave.

Después de caracterizar la dinámica clásica, y considerando los métodos para cuantizar
billares duros, los cuales se basan principalmente en resolver la ecuación de Schrödinger
con condiciones de contorno de Dirichlet; se espera encontrar una metodología que per-
mita, de forma sistemática, cuantizar un billar suave. Esto supone una herramienta que
sea capaz de calcular funciones de onda dada una geometría y dureza del potencial pa-
ra el billar. Primero abordando el problema estacionario y, de ser posible, al caso con
dependencia temporal. Las limitaciones dependerán de la complejidad numérica de los
potenciales con rigidez que usualmente aparecen al estudiar billares suaves. A pesar de
esto, se estima poder determinar un rango de aplicabilidad de la metodología en función
de los recursos computacionales disponibles.

Una vez que se tengan herramientas para resolver billares cuánticos suaves, se planea
identificar los métodos óptimos para el estudio del caos cuántico en este tipo de sistemas,
aprovechando las herramientas desarrolladas para el estudio del caos clásico en este mo-
delo. A su vez, se anticipa aportar información sobre la influencia que tiene la geometría y
la dureza del potencial en la dinámica cuántica de un billar. Además, se propone desarro-
llar herramientas numéricas para el estudio y caracterización de la cicatrización cuántica
estándar en billares suaves. Con esto, se espera comprender de manera integral el papel
del caos cuántico dentro del marco de la correspondencia clásico-cuántica. Finalmente,
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se espera que este trabajo ofrezca herramientas numéricas y teóricas que contribuyan a
la comprensión del fenómeno de la cicatrización cuántica de muchos cuerpos. Esperan-
do extender el estudio a posibles conexiones con realizaciones experimentales de billares
cuánticos suaves de muchos cuerpos.

5. Avances

Se cuenta con una herramienta para resolver la dinámica de billares suaves [3]. La cual
primero se implementó en una geometría elíptica y posteriormente se llevó a al caso de un
squricle. Este nombre proviene de la combinación anglosajona square y circle y es una
curva que va desde un círculo hasta un cuadrado y viceversa. En el caso anisotrópico que
se presenta a continuación [79], se puede mapear un rectángulo a una elipse. La curva de
un squircle es

x2

α2 + y2

β2 − s2x2y2

α2β2 = 1 , (5.1)

donde α y β son los lados del rectángulo, o bien, el semieje mayor y semieje menor de
la elipse, de acuerdo al caso límite correspondiente y dependiendo de la orientación de
la curva. El parámetro de cuadradez s toma valores 0 ≥ s ≥ 1, donde se recupera un
rectángulo si s = 1 y una elipse cuando s = 0.

Se tiene la capacidad de cómputo para evolucionar la dinámica a durezas muy altas (pro-
bado hasta h ≈ 100) y tiempos muy grandes (del orden de 106 pasos de computadora). Sin
embargo, puede llegarse a requerir grandes cantidades de poder de cómputo. Los cálculos
mostrados a continuación se realizaron en un equipo con 256gb de memoria RAM, que
permite completar las tareas en un tiempo razonable. Conociendo el potencial que rige la
dinámica de una partícula dentro del billar, y por tanto las ecuaciones de movimiento de
Hamilton, esta herramienta numérica permite resolver el billar suave. Por una parte, ésta
integra las ecuaciones de movimiento que dependen de la dureza del pozo de potencial
h ∈ (0,∞). Por ejemplo, para el billar suave de squircle se muestran unas trayectorias en

Figura 2: Trayectorias en un billar suave de squircle mostradas en color verde dada una
condición inicial (flecha negra) para los parámetros de dureza y cuadradez: a) h = 2.5 y
s = 0 (billar de elipse), h = 8 y s = 0.5, h = 2.5 y s = 0.8, h = 8 y s = 0.99. En negro
se muestra la curva de nivel correspondiente a energía cero la cual se corresponde con la
frontera en el caso de paredes duras.
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Figura 3: Comparación por columnas entre las secciones de Poincaré de un billar suave
de elipse que se encuentra en la literatura [27] (fila superior) y las secciones de Poincaré
(fila inferior) para los mismos parámetros pero calculados con las herramientas numéricas
desarrolladas en la tesis de maestría. En ambos casos E = 0, a = 1 y b =

√
1 − 0.722,

que son el semieje mayor y menor, respectivamente. Mientras que el parámetro de dureza
toma los valores: a)h = 1, b)h = 1.7, c)h = 2.5 y d)h = 6.

la figura 2, donde se modulan de diferentes formas la dureza del potencial y la cuadradez
y puede observarse cómo en los casos de dureza más grande, las trayectorias tienden a
líneas rectas.

Por otro lado, también se tiene la capacidad de calcular secciones de Poincaré. Esta he-
rramienta parte de la evolución de trayectorias y la identificación de puntos que cruzan
la hípersuperficie de energía constante establecida.. En el caso de billares el corte que
se hace es sobre el llamado espacio de colisiones, tomando en cuenta que para billares
suaves los choques ocurren con las equipotenciales del pozo. Cada punto de la sección
de Poincaré representa una colisión en (θ, ptan) que son el ángulo polar y el momento
tangente respecto a la curva equipotencial donde ocurre el choque. Esta herramienta se
ha verificado con secciones de Poincaré de billares suaves, presentes en la literatura (ver
figura 3).

Además, se tiene la capacidad numérica de calcular el máximo exponente de Lyapunov en
billares suaves (ver figura 4). A partir de evolucionar un vector que cuantifica el ritmo de
separación de dos condiciones iniciales infinitesimalmente cercanas. Para evitar desbor-
damiento numérico, se renormaliza recurrentemente y así permite evoluciones a tiempos
muy largos, lo que es necesario para el estudio dinámica clásica de un billar suave.

Se ha implementado una herramienta numérica que da la solución estacionaria para billa-
res cuánticos duros: circunferencia, elipse, squircle y estadio de Bunimovich. Este es el
caso más sencillo de un billar cuántico. En la figura 5 se muestran algunos valores propios
a manera de ilustración de la herramienta numérica desarrollada, la cual consiste en resol-
ver la ecuación de Helmholtz (1.3) con condiciones de contorno utilizando el método de
diferencias finitas. Cada geometría requiere de implementar con cuidado las condiciones
de contorno tipo Dirichlet, en ese sentido, recae la principal complejidad de este méto-
do. También se puede abordar este problema resolviendo analíticamente la ecuación de
Helmholtz, sin embargo, se necesitan funciones especiales acordes a la geometría de la
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Figura 4: Mapa de caos y regularidad con exponentes de Lyapunov para un billar de squir-
cle. En el eje vertical se tiene un parámetro geométrico que estira o contrae la frontera del
billar y en el eje horizontal se tiene el parámetro de dureza. Primer columna: cálculo del
máximo exponente de Lyapunov promediado sobre diferentes condiciones iniciales alea-
torias λ̄. Segunda columna: el valor más grande del máximo exponente de Lyapunov para
un conjunto de condiciones iniciales aleatorias λmax. Se varía el parámetro s del billar
yendo de una elipse hasta casi completamente rectangular: a)-b) s = 0.0, c)-d) s = 0.3,
e)-f) s = 0.5, g)-h) s = 0.8, i)-j) s = 0.9. Se fija E = 0 en todos los casos. Cada co-
lumna maneja una escala de color con diferente valor máximo para observar variaciones
muy sutiles que de otra forma serían difíciles de apreciar. Utilizar este tipo de mapas de
parámetros permite evidenciar la aparición de caos o regularidad acorde a cómo un pará-
metro se module. Parte inferior: un mallado más fino para apreciar con mayor precisión
las regiones con exponente de Lyapunov cero.

Figura 5: Soluciones estacionarios para el cuadrado de la función de onda |ψnm|2 en un
billar cuántico para diferentes fronteras: a) circular (|ψ1 6|2), b) elíptica (|ψ1 6|2), c) squir-
cle (|ψ2 7|2) y d) estadio de Bunimovich (|ψ1 1|2). La escala de color va desde azul (cero
probabilidad) hasta blanco (mayor probabilidad).
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frontera lo cual no se tiene en todos los casos.

A manera de comprobación de las herramientas a desarrollar en este trabajo, se tomará
como referencia el artículo de Perttu Luukko et al. [80] donde caracterizan cicatrices
cuánticas en pozos de potencial bidimensionales suaves con geometría circular. Tener un
punto de comparación será de gran ayuda para afrontar los primeros retos de este proyecto.
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Calendario de actividades

ACTIVIDADES
24 25 25 25 26 26 26 27 27 27 28
O I P O I P O I P O I

Investigación documental.
Identificación del problema dinámico,
tanto clásico como cúantico.
Análisis espectral de billares cuánticos
duros.
Métodos para cuantizar un billar suave.
Cursar UEAs Trabajo de Investigación
Estudiar cuantificadores de cicatrización
en los billares duros y suaves.
Estudiar cuantificadores de cicatrización
de muchos cuerpos.
Estudio sobre el principio de correspon-
dencia clásico-cuántico mediante los bi-
llares desarrollados.
Inspección de la viabilidad de contrastar
los resultados obtenidos con realizacio-
nes experimentales existentes.
Escritura de un artículo de investigación.
Escritura de la tesis.
Disertación

Tabla 1: Cronograma de actividades de investigación
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