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1 INTRODUCCION

1. Introduccion

En la década de los 60, el meteor6logo Edward Lorenz public6 uno de los articulos cienti-
ficos mas citado en la actualidad [1, 2], donde se estudio6 la dindmica de un fluido viscoso
que resulta de la conveccion entre dos placas horizontales a diferente temperatura. Como
resultado obtuvo unas ecuaciones diferenciales que son altamente sensibles a las condi-
ciones iniciales. Ademads, encontrando que algunas trayectorias tienden a converger hacia
una region especifica del espacio fase, independientemente de la eleccion de condicion
inicial, esto es lo que ahora se conoce como el atractor que lleva su nombre. Su inves-
tigacion se convirtié en un paradigma para el entendimiento del caos, transformando la
vision de la comunidad cientifica sobre la predictibilidad en sistemas naturales complejos.
En 1972 Lorenz dio una charla titulada: Predictibilidad: ;El aleteo de una mariposa en
Brasil puede ocasionar un tornado en Texas? Este suceso fue un parteaguas pues, desde
aquel momento hasta la actualidad, el término caos ha logrado permear en la poblaciéon
no cientifica a una escala muy amplia [2]. Ahora la referencia al efecto mariposa se utiliza
como una metafora accesible para explicar a audiencias ajenas al &mbito cientifico lo que
se conoce como la teoria del caos. Lorenz intentd varias veces dar una definicién de este
concepto, bajo su vision: un sistema manifiesta caos cuando el estado presente determina
completamente el estado futuro, pero el estado aproximado presente es insuficiente para
determinar el estado aproximado en el futuro distante [3l].

1.1. Caos clasico

Sin embargo, los primeros trabajos relacionados con el concepto de caos se remontan al
trabajo del matemdtico Henri Poincaré [4], que presté especial atencion al sistema de tres
cuerpos: Tierra-Sol-Luna; enfocidndose en el comportamiento de Orbitas generadas por
conjuntos de condiciones iniciales. Esto le permitié mostrar la existencia de trayectorias
de gran complejidad, que en la actualidad denominamos 6rbitas cadticas [5]. Un sistema
dindmico puede definirse como un descripcion matematica determinista para la evolucion
del estado de un sistema hacia adelante en el tiempo. Donde el tiempo puede ser tanto
una variable continua (al sistema se le suele llamar flujo), o bien, discreta [S]. Asi, se
denomina orbita (inspirado histéricamente en la mecdnica celeste) a aquella trayectoria
(cerrada o abierta) en el espacio fase (o de configuraciones) que es resultado de la evo-
lucién de un sistema dindmico dado un conjunto de condiciones iniciales. Cabe destacar,
que las Orbitas pueden ser continuas, discretas, finitas o infinitas [6]. Cuando las solu-
ciones a las ecuaciones que rigen a un sistema dindmico presentan pequefias variaciones
ante pequefios cambios en las condiciones iniciales, se dice que las érbitas son regulares
o normales [7].

Los sistemas con dos o més grados de libertad tienen orbitas periddicas que se clasifi-
can de acuerdo con su estabilidad, es decir, segin como responde el sistema a pequefias
perturbaciones de las trayectorias. Cuando la dindmica es cadtica, se espera la aparicién
de 6rbitas periddicas inestables (UPO, por sus siglas en inglés). Aunque también pueden
presentarse en sistemas regulares, no es tipico [8]]. La informacién que se obtiene de este
tipo de drbitas puede utilizarse para describir propiedades estadisticas del caos como ex-
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1.2 Caos cudntico 1 INTRODUCCION

ponentes de Lyapunov, entropias o dimensiones fractales; incluso aspectos fundamentales
como la estructura jerdrquica del caos y las transiciones caos-regularidad [9-11]].

Si se considera un sistema dindmico, tal que su estado presente exacto determina comple-
tamente todos los estados futuros, se dice que el sistema dindmico es determinista [12]].
Entonces, el término caos dindmico, caos cldsico o simplemente caos, se utiliza para des-
cribir el comportamiento irregular de sistemas dindmicos, el cual surge de una evoluciéon
temporal estrictamente determinista, sin ninguna fuente de ruido o estocasticidad externa.
El estudio contempordneo del caos es de utilidad para entender como emergen patrones
y orden aparente en sistemas que inicialmente parecen completamente aleatorios, dentro
de diferentes disciplinas cientificas como la fisica, quimica, biologia y la ingenieria [13]].
Y es que los sistemas en la naturaleza exhiben tanto estructuras ordenadas como cadticas,
asi, el control y entendimiento del origen de la aleatoriedad son temas relevantes a la fecha
para la ciencia y las ingenierias [[14]].

1.2. Caos cuantico

Cuando los efectos cuanticos son relevantes en un sistema fisico, la nocidn clasica de
caos (en términos de sensibilidad a condiciones iniciales definidas con precision arbi-
traria) pierde sentido, ya que los estados cudnticos estdn descritos por distribuciones de
probabilidad (funciones de onda) y no por trayectorias deterministas. En estos casos, uno
se ve naturalmente llevado a buscar otros criterios genuinamente cuanticos que permitan
distinguir entre tipos de dindmica, como lo puede ser la estadistica de niveles energéti-
cos [[L3)]. Asi, el caos cudntico aparece como la disciplina encargada de estudiar los rasgos
de los sistemas cudnticos cuyos andlogos cldsicos son cadticos y de identificar los aspectos
propios de los sistemas cuanticos no integrables. Debido al principio de correspondencia
(el cual demanda que en la region semiclasica, que son escalas largas comparadas con la
longitud de onda de De Broglie, la mecédnica cudntica continuamente recupera la mecanica
clésica [[16])), en el limite cldsico, los aspectos que inducen una dindmica cadtica deberian
prevalecer en los sistemas cudnticos [[17]]. No obstante, queda mucho por entender acerca
del papel del caos en la correspondencia cldsico-cudntica. Por esta razon, se eligen los
billares como objeto de estudio, pues son un modelo lo suficientemente simple para ser
investigado por métodos matemdticos pero que demuestra un comportamiento tipico de
movimiento irregular [18], ademds de que histéricamente se han utilizado para modelar
una amplia gama de fenémenos fisicos [19].

1.3. Billares

Los sistemas conocidos como billares son modelos paradigmaticos para explorar el caos
y sus propiedades. Su estudio se remonta al trabajo de Jacques Hadamard que, en 1898,
propuso un sistema que consiste en una particula puntual de masa m que se mueve li-
bremente, es decir, sin fuerzas externas, a lo largo de una superficie bidimensional dada
2 [20]]. Entonces, si consideramos que en la frontera 0€) hay paredes sélidas (equivalente
a un pozo de potencial infinito), podemos definir un billar plano de paredes duras como
la regién €2 dentro de la cual, una particula que evoluciona bajo la accién de un potencial,
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1.4 Billares suaves 1 INTRODUCCION

puede colisionar con la frontera 02 de forma instantanea y especular, es decir, siguiendo
la regla de que el dngulo de incidencia es igual al dngulo reflejado. La evolucion de una
particula dentro de un billar de paredes duras no es continua, pues dentro del dominio
se tiene la evolucidn libre y, en el momento en que ocurre una colision, los valores de
momento cambian instantdneamente Pincidente — Prefiejado- EN general, la evolucion de una
particula durante un tiempo ¢ en un billar de paredes duras equivale a la composicion de
mapeos continuos J y discretos J, a lo largo de intervalos 7; = ¢;11 — ¢;, con ¢ denotando
la ¢-ésima colision [21]].

Los billares buscan modelar diversos fendémenos fisicos en los cuales una o mds parti-
culas se mueven dentro de un contenedor y colisionan con sus paredes. Las principales
propiedades de la dindmica de estos sistemas fisicos estdn determinadas por la forma de
las paredes del contenedor [22]. Por ejemplo, si la frontera es un circulo o una elipse
entonces el sistema es integrable (regular) [23]. Sin embargo, una frontera deformada
conduce a un sistema altamente cadtico (debido a los cambios de signo en la curvatura);
como lo mostré Yakov Sinai con su billar [24] y posteriormente reafirmado por Leonid
Bunimovich [25].

Por otro lado, si se estudia a los billares mds como modelo fisico que matematico, hay que
tomar en cuenta que las particulas no experimentan colisiones instantdneas, sino que son
desviadas progresivamente debido a la accién de un campo [26]. De ahi es que surge el
concepto de billar suave como un modelo un tanto mas realista que un pozo de potencial
infinito.

1.4. Billares suaves

Como se menciono antes, los billares de paredes rigidas tienen la particularidad de intro-
ducir una discontinuidad en la evolucion del espacio fase. Un enfoque alternativo, emplea-
do para estudiar sistemas donde la suavidad es fisicamente relevante, consiste en introdu-
cir suavidad en la frontera del billar. Al hacerlo, la particula cambia su momento de forma
continua durante un lapso, y luego contintia su evolucion, evitando las discontinuidades
en el espacio fase y permitiendo asi la descripcion completa de la dindmica resolviendo
las ecuaciones de movimiento de Hamilton. Por una parte, los billares de paredes suaves
son de interés tedrico ya que su dindmica puede analizarse de manera exhaustiva mediante
las herramientas de la mecdnica Hamiltoniana, gracias a la continuidad de sus trayecto-
rias. Ademads, se ha mostrado que la suavidad en un billar tiene un efecto estabilizador en
la dindmica [27]. Asi, se pueden estudiar propiedades dindmicas adicionales que aportan
riqueza al entendimiento del caos y la regularidad.

El punto de partida para modelar un billar suave es escribir una funcién Hamiltoniana
para un pozo de potencial que es suave en su frontera, es decir,

1
H =5z +p,) +Viz,yh), (L.1)

donde A es un nuevo pardmetro el cual modula la dureza del billar [28]. Ademads, el po-
tencial viene dado como
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1.5 Billares cuanticos 1 INTRODUCCION

V(z,y; h) = erf{h (OQ)}, (1.2)

donde 02 corresponde a la ecuacién en forma implicita de la curva para la frontera y
erf denota a la funcién error erf(z) = 27~ 1/2 [ e~ ds. Cabe destacar que en la literatura
pueden encontrarse diferentes perfiles para suavizar un billar, como por ejemplo funciones
polinomiales [29]]. El pardmetro de dureza toma sentido al revisar sus casos limite, pues
cuando A — 0 se tiene la situaciéon donde la contribucién de las fronteras es nula y se
recupera el potencial de una particula libre. Mientras que en el limite h — oo se tiene un
pozo de potencial infinito: caso de paredes duras. Asi, los billares suaves resultan en una
extension natural de los billares clasicos. En este proyecto se busca extender ain més este
concepto para también modelar fendmenos cudnticos.

1.5. Billares cuanticos

Se define un billar cuédntico plano (en el sentido de paredes duras) como un pozo bidimen-
sional con paredes infinitas y potencial nulo en su interior [30]]. La posicién de las paredes
queda determinada por una curva cerrada C, y en el interior por un dominio D haciendo
que este sistema sea ligado para cualquier energia. Ahora, la dindmica esta regida por la
ecuacion de Schrodinger en el interior del pozo que se anula en el contorno. Para el caso
estacionario, si se expresa la energia en términos del nimero de onda k = /2m#FE/h, el
problema se reduce a resolver la ecuacion de Helmholtz con condicién de Dirichlet en la
frontera

Vo =—k*penD, @=0enC. (1.3)

En un billar cuantico comunmente se estudia el espectro, el cual consiste en un nimero
infinito de valores propios 0 > k > k2 > ..., con sus respectivas funciones propias
asociadas ¢q, ¢, ....

Las funciones propias asociadas 11, 95, 93, ..., pueden ser normalizadas y constituyen un
conjunto ortonormal completo para las funciones de cuadrado integrable, donde cada fun-
cion es infinitamente diferenciable en los puntos interiores. El conjunto de puntos donde
cada funcién propia v; se anula es llamado el conjunto nodal, el cual consiste de curvas
infinitamente diferenciables en el interior de V. En el caso de una membrar oscilante, por
ejemplo, las curvas nodales aparecen donde la membrana se mantiene en reposo durante
una eigenvibracion [31]. Cuando m curvas nodales se cruzan en un punto, lo hacen for-
mando angulos iguales 7/m [30]. En ese sentido, un gran reto para la resolucién de un
billar cuédntico duro (pozo de potencial escalonado) es el de incorporar en el modelo un
ensamble de funciones adecuadas que respeten las condiciones de frontera del billar [32].

A la fecha, los billares cudnticos han sido estudiados exhaustivamente. Por un lado, hay
diversas investigaciones tedricas, por ejemplo, para la descripcion del caos en diferentes
geometrias [33], el estudio de fendmenos de transporte [34, [35]], el modelaje de fluidos
cuanticos como el de *He [36] o para estudiar el principio de correspondencia cldsico-
cudntico [37, 38]. A su vez, se han realizado implementaciones experimentales con bi-
llares de microondas [39, 40], billares nanoscopicos en monocapas de dicalcogenuros de
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metales de transicion (TMD) para el estudio la estabilidad de estados cristalinos [41], bi-
llares opto-atdmicos [42,43], billares de fluidos polariténicos [44]]. Sin embargo, hay una
direccion de estudio para estos sistemas que que ha sido escasamente estudiada y es de
particular interés para este proyecto: la cicatrizacién cudntica.

1.6. Cicatrizacion cuantica

Décadas atrds, Michael Berry [45] conjeturd que las funciones propias de sistemas cudn-
ticos cuyo andlogo cldsico es cadtico deberian parecerse localmente a una superposicién
de ondas planas. Con esto, la funcion de onda es modelada como

U(r) = Y sinflr + ). (14)

donde k; son vectores de onda uniformemente distribuidos en todas las direcciones con
una magnitud fija k, ¢; son fases aleatorias uniformemente distribuidas y ¢; son coeficien-
tes aleatorios uniformemente distribuidos en el intervalo (—1, 1) y normalizados de forma

que [y, [¢|*dr = 1 [17].

Para el problema de un billar de Bunimovich cudntico, Steven McDonald y Allan Kauf-
man abordaron la solucion de la ecuaciéon de Helmholtz de forma numérica, donde
identificaron curvas nodales que son afectadas por Orbitas periddicas [46]. Concluyendo
que existe una repulsion mutua entre valores propios vecinos y una direccionalidad alea-
toria para las curvas nodales. Inspirado por este trabajo, Eric Heller [47] bautizé estas
huellas generadas por las drbitas periddicas inestables como cicatrices cudnticas. Asi, de
acuerdo con Heller [48] se establece la siguiente definicion: Un estado propio cudntico de
un sistema que es cldsicamente cadtico tiene una cicatriz de una 6rbita periddica inestable
si su densidad en las variedades clésicas, cerca de la 6rbita periddica, difiere de forma
significativa de la densidad estadisticamente esperada.

Un aspecto relevante de los billares cudnticos es que los estados propios estdn influencia-
dos no sdlo por la superficies de energia, sino también por las Orbitas cerradas del sistema
clasico. En otras palabras, las orbitas de alguna manera, dejan una huella que persiste a
través de miles de estados y probablemente sobreviven hasta el limite cldsico [49]. La
cicatrizacion cuantica se ha estudiado en billares desde 1984 [47]] hasta la fecha [50, 51]].
Tomando diferentes geometrias como el estadio de Bunimovich [52] y el billar de Si-
nai [S3]]. Pero también otras menos convencionales como la geometria triangular [54], de
diamante [535] o hasta una frontera ondulada [56]. Sin embargo, el fendmeno de la cica-
trizacion es mas general que el caso de un billar y en ello recae que sean fundamentales
para el entendimiento de los sistemas cudnticos.

1.7. Cicatrizacion de muchos cuerpos

Debido a las complicadas interacciones entre sus componentes, los sistemas cudnticos de
muchos cuerpos no son tipicamente integrables y exhiben caos. El caos se piensa como un
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Figura 1: Arreglo experimental de una cadena de 51 dtomos visualizado via fluorescen-
cia. Fila superior: antes de aplicar un pulso adiabdtico. Tres filas inferiores: instancias
separadas después del pulso. Los circulos rojos indican ausencia de dtomos atribuida a
excitaciones de Rydberg. Las elipses azules indican pares de 4tomos que funcionan como
paredes ya sea por encontrarse en el mismo estado o por estar en su estado base. Figura
tomada de [58]].

mecanismo que hace posible que los sistemas cudnticos alcancen estados de equilibrio y
térmicos, como sucede en el caso clésico. Es por eso que en general satisfacen la llamada
Hipdtesis de Termalizacion de Eigenestados (ETH, por sus siglas en inglés) [57]. Gracias
a un importante experimento en un simulador de cuédntico de un atomo de Rydberg el
fendmeno de cicatrizacion cudntica de muchos cuerpos ha atraido la atencién en la tltima
década [58] (ver figura[I). El comportamiento que observaron no pudo ser caracterizado
por un ensamble térmico simple pues sus observaciones sugirieron que el sistema no ter-
maliza dentro de las escalas de tiempo que esperaban, lo cual resulto ser inesperado ya que
su sistema no se asemeja a ningun sistema integrable conocido. Fueron en trabajos poste-
riores, donde se observé que esto se debia en gran medida a estados propios que tendian
a distribuirse de forma inesperada, andlogamente a los estados cicatrizados que se con-
centraban en la vecindad de 6rbitas periddicas inestables clédsicas [59], de ahi que surge el
concepto de cicatriz cudntica de muchos cuerpos. Sin embargo, para justificar la analogia
con las cicatrices en billares cuanticos, deberia existir alguna nocién de trayectoria cldsica
subyacente a los estados propios. Encontrar tal trayectoria, y més generalmente el contra-
punto cldsico de un sistema cudntico de muchos cuerpos, es de hecho uno de los objetivos
centrales del campo del caos cuéntico [60]. Ademads de tener implicaciones profundas en
el entendimiento del caos en sistemas cudnticos, este fendmeno resulta importante pues
las cicatrices cudnticas de muchos cuerpos permitirian transportar y proteger informacién
en sistemas cudntico complicados, lo que ha motivado investigaciones sobre su posible
aplicacion en informacion cudntica [61]].

A pesar de existir estudios sobre como la suavidad afecta las propiedades de los billares
cuanticos, éstos son escasos [62]]. Incluso los billares suaves clasicos no se han estudiado
a profundidad, por ejemplo, hay geometrias tipicas del caso de paredes duras a las que no
se les ha estudiado el efecto de un potencial suave en su frontera. Ademaés del efecto de
otros aspectos que naturalmente surgen en billares suaves, como la energia del sistema o
la disipacion de particulas. Por tanto, se pretende estudiar el efecto de la suavidad en los
billares cudnticos y su conexién con aspectos fundamentales de la cicatrizaciéon de uno y
de muchos cuerpos.
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3 METODOLOGIA

2. Objetivos

Para delimitar el alcance de este proyecto se delimitan los siguientes objetivos.

2.1. Objetivo general

El objetivo general de este trabajo es estudiar la presencia y robustez de cicatrices cuanti-
cas en billares suaves con geometrias tradicionales o modulables.

2.2. Objetivos especificos

= Resolver la dindmica de billares duros y billares suaves, asi como caracterizar sus
regimenes de regularidad y caos como funcién de los pardmetros relevantes del
sistema.

» Estudiar y calcular cicatrices cudnticas y UPOs en billares cudnticos tradicionales
o modulables y caracterizar su dindmica.

= Cuantizar billares suaves con geometrias tradicionales o modulables y caracterizar
su dindmica.

= Aprender las técnicas de anélisis de caos cudntico para el estudio de las propiedades
de los billares cudnticos suaves.

= Confirmar la presencia de cicatrizacion cudntica en billares cudnticos suaves con
geometrias tradicionales o modulables.

= Explorar la posibilidad de extender el estudio de cicatrices cudnticas en billares
cudnticos suaves en el terreno de sistemas cudnticos de muchos cuerpos.

3. Metodologia

En esta seccidn, se presentan las herramientas tedricas y numéricas necesarias para la
realizacion de este proyecto.

3.1. Solucion de sistemas dinamicos

Se usara la herramienta numérica desarrollada en el lenguaje Julia para mi tesis de maes-
tria como punto de partida [3]]. La cual permite evolucionar particulas en un billar suave
clasico dadas las ecuaciones de movimiento de Hamilton correspondientes una curva dife-
renciable como frontera, como en el caso, por ejemplo, de una circunferencia, una elipse
y una squircle. Un aspecto a resaltar es que este herramienta permite integrar ecuaciones
diferenciales con rigidez (stiffness), lo cual es uno de los principales problemas a tratar
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3.2 Técnicas de analisis del caos y regularidad cldsicos 3 METODOLOGIA

cuando se trabaja con billares suaves [27]]. Esta rigidez se traduce en orbitas que tienden a
curvas no diferenciables (poco suaves). Entonces, para valores de dureza suficientemente
grandes, las ecuaciones de movimiento no se pueden integrar por métodos convenciona-
les, como puede serlo Runge-Kutta de orden 4 [63]]. Con lo anterior, serd posible explorar
diferentes geometrias de interés para este proyecto.

Como preambulo para el estudio de billares suaves cuantizados se hard uso de algunas
técnicas bien conocidas para el estudio de caos cudntico, tales como los indicadores es-
pectrales (distribuciones de primeros vecinos [64], factor r [65]) e indicadores dindmicos
de caos [66]. Para esto, se deben identificar las 6rbitas periddicas inestables, que se re-
lacionan directamente con el fendmeno de cicatrizacion. Ademds, se pretende extender
el estudio a los sistemas de muchos cuerpos. Para esto, se indagard en los métodos més
adecuados para estudiar el caos en estos sistemas.

3.2. Técnicas de analisis del caos y regularidad clasicos

Para estudiar de forma cualitativa la dindmica de un sistema y poder identificar regiones
del espacio fase que presentan caos, se suele recurrir a una técnica denominada méto-
do de la seccidén transversal de Poincaré o, simplemente, secciones de Poincaré (PSOS,
por sus siglas en inglés). Si bien puede utilizarse en sistemas de dimensién mayor, es
particularmente util en sistemas con dos grados de libertad [67]. Esta técnica consiste
en transformar una evolucién continua en un mapeo discreto, donde cada punto de és-
te se representa como una perforacion de una superficie de energia constante por dicha
trayectoria en el espacio fase. Esto facilita la identificacion de Orbitas periddicas y cuasi-
periddicas que son clave para comprender la naturaleza del comportamiento caético [68]].
A pesar de la utilidad de esta herramienta, la informacion que se le puede recuperar es
unicamente cualitativa.

Para un andlisis cuantitativo del caos, se suele recurrirse a los exponentes de Lyapu-
nov [19] 169, [7/0]. Esta herramienta proviene de estudiar el ritmo al que dos condiciones
iniciales infinitesimalmente cercanas se alejan a tiempos largos. La naturaleza de esta
cantidad surge de linealizar la dindmica, donde se observa que

u(t)| ~ [u(0)] e, (3.1

donde u(t) = (q(t); p(t)) es un vector del espacio fase que cuantifica la separacién entre
dos 6rbitas, inicialmente cercanas, al tiempo ¢. Donde a la cantidad A se le llama exponente
de Lyapunov.

No s6lo hay un exponente de Lyapunov, sino un espectro cuya dimension es la misma que
la del sistema dindmico de estudio. Cada exponente \; del espectro puede interpretarse
como la razén de crecimiento promedio de los ejes principales de una elipsoide infinite-
simal, que rodea un punto del espacio fase y evoluciona de acuerdo a una regla dindmica
dada (ecuaciones de movimiento). Por tanto, el espectro de Lyapunov describe el ensan-
chamiento y contraccion caracteristico del flujo en el espacio fase [21]]. En un espacio
fase como el de un billar (con dos coordenadas de posicién y dos de momento) todos los
vectores de perturbacion crecen asintéticamente con el mdximo exponente de Lyapunov
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del espectro \;. Ademds, se cumple en este caso que Ao = —A3y Ay = — Ay [71]], lo cual
proviene de la simetria de pares de Smale. Para sistemas Hamiltonianos (que conservan
energia), se tiene que Ay = A3 = 0 [72].

Aunque el espectro de Lyapunov se puede utilizar para proporcionar una definicién cuan-
titativa del caos, el maximo exponente de Lyapunov \; = ), es el mas importante de todo
el espectro. Pues tanto la magnitud como el signo de esta cantidad revelan informacién
sobre la dindmica del sistema estudiado. Tomando como referencia la ecuacién (3.1)), se
discuten los tres posibles valores de esta cantidad:

1. (A < 0). Aqui e decrece hacia cero a medida que ¢ aumenta. Esto significa que la
magnitud de cualquier perturbacién inicial |u(0)| tiende a disminuir exponencial-
mente rapido hacia cero. En términos de la dindmica del sistema, las trayectorias
que inicialmente estdn cerca una de la otra tienden a converger con el tiempo. El sis-
tema, por lo tanto, tiene la capacidad de retornar a un estado estable después de ser
perturbado, y pequeias variaciones o errores tienden a amortiguarse con el tiempo.
Entonces un exponente de Lyapunov negativo mediria el ritmo al que un sistema se
aproxima a algo tipico de un punto particular: un atractor regular [7].

2. (A= 0). Si eM = 1, independientemente del valor de t, significa que la magnitud
de cualquier perturbacién inicial |u(0)| se mantiene constante a lo largo del tiempo.
Desde el punto de vista dindmico, las trayectorias que inicialmente estan cerca una
de la otra no convergen ni divergen significativamente en el tiempo. Este es el caso
de movimiento regular [73].

3. (A > 0). Cuando e aumenta exponencialmente a medida que ¢ se hace grande, en-
tonces la magnitud de cualquier perturbacion inicial |u(0)| crece exponencialmente
con el tiempo. Asi, las trayectorias que inicialmente estdn cercanas comienzan a
divergir rdpidamente una de otra. Esto cuantifica el promedio de crecimiento de una
desviacion infinitesimal de una Orbita regular a partir de una perturbacién. En este
caso se dice que el movimiento es cadtico [7]].

Ademads de las secciones de Poincaré y los exponentes de Lyapunov existen otros métodos
que se revisaran para estudiar su viabilidad como cuantificadores el caos en un billar, como
lo puede la caracterizacion de pardmetros no lineales [74] o la entropia de Kolmogorov-
Sinai, que caracteriza el grado de inestabilidad hiperbdlica en sistemas dindmicos y que
puede relacionarse con coeficientes de transporte en situaciones fuera de equilibrio [73]].
Esto permitird estudiar aspectos mds profundos de la dindmica de un sistema caético.

3.3. Técnicas: funciones de onda y espectros cuanticos

Se buscard la forma 6ptima de cuantizar un billar suave. Comenzando por implementar
los métodos de Eduardo Vergini [30] para billares duros, que consisten en resolver la
ecuacion de Schrodinger en pozos de potencial con condiciones de contorno adecuadas.
También se estudiardn los métodos semicldsicos con integrales de camino, consideran-
do las reglas de cuantizacion semicldsica tipo Bohr-Sommerfeld-Einstein-WKB que son
un estandar [76l]. También se estudiard la teoria de Gutzwiller sobre Orbitas periddicas,
donde se remplazan las integrales de camino por una suma infinita sobre todas las érbitas
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periddicas, permitiendo con esto que el espectro de energia quede determinado completa-
mente por cantidad puramente clasicas, como lo pueden ser las longitudes de las orbitas
periddicas y sus exponentes de Lyapunov [77]].

3.4. Técnicas para el calculo de cicatrizacion

En principio, se buscard caracterizar las familias de drbitas en los billares de este proyecto
para investigar la presencia de cicatrices de trayectorias periddicas en las funciones pro-
pias a partir de las técnicas propuestas por Vergini [30]. Posteriormente, se implementara
la evolucion de paquetes de onda de acuerdo a los planteamientos de Heller [48], tomando
en cuenta los tiempos de recurrencia 7, que son una funcioén de la matriz de estabilidad
y la forma inicial del paquete de onda (estos tiempos estdn ponderados por el exponente
de Lyapunov). También se explorard la viabilidad de usar un andlisis puramente cudntico,
como lo pueden ser funciones de Husimi para analizar localizacién en el espacio fase [78]].

4. Resultados Esperados

Existen diversas metodologias para detectar y clasificar UPOs, ya sea haciendo aproxima-
ciones lineales, o bien, usando la fuerza bruta de computo. Aun asi, estos métodos suelen
ser generales para sistemas dindmicos y no han sido desarrollados en plenitud para billa-
res suaves. En este trabajo se espera encontrar el método 6ptimo para caracterizar familias
de UPOs en el caso de billares suaves y entender su relacién con el pardmetro de dureza
y la geometria del potencial. Con lo anterior, se planea identificar los cuantificadores de
caos clasico Optimos para el caso de un billar suave.

Después de caracterizar la dindmica clésica, y considerando los métodos para cuantizar
billares duros, los cuales se basan principalmente en resolver la ecuacién de Schrédinger
con condiciones de contorno de Dirichlet; se espera encontrar una metodologia que per-
mita, de forma sistematica, cuantizar un billar suave. Esto supone una herramienta que
sea capaz de calcular funciones de onda dada una geometria y dureza del potencial pa-
ra el billar. Primero abordando el problema estacionario y, de ser posible, al caso con
dependencia temporal. Las limitaciones dependerdn de la complejidad numérica de los
potenciales con rigidez que usualmente aparecen al estudiar billares suaves. A pesar de
esto, se estima poder determinar un rango de aplicabilidad de la metodologia en funcion
de los recursos computacionales disponibles.

Una vez que se tengan herramientas para resolver billares cudnticos suaves, se planea
identificar los métodos 6ptimos para el estudio del caos cudntico en este tipo de sistemas,
aprovechando las herramientas desarrolladas para el estudio del caos cldsico en este mo-
delo. A su vez, se anticipa aportar informacion sobre la influencia que tiene la geometria y
la dureza del potencial en la dindmica cudntica de un billar. Ademas, se propone desarro-
llar herramientas numéricas para el estudio y caracterizacion de la cicatrizacién cudntica
estandar en billares suaves. Con esto, se espera comprender de manera integral el papel
del caos cudntico dentro del marco de la correspondencia cldsico-cuantica. Finalmente,
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se espera que este trabajo ofrezca herramientas numéricas y tedricas que contribuyan a
la comprension del fendmeno de la cicatrizacion cudntica de muchos cuerpos. Esperan-
do extender el estudio a posibles conexiones con realizaciones experimentales de billares
cudnticos suaves de muchos cuerpos.

5. Avances

Se cuenta con una herramienta para resolver la dindmica de billares suaves [3]. La cual
primero se implementé en una geometria eliptica y posteriormente se llevo a al caso de un
squricle. Este nombre proviene de la combinacidn anglosajona square y circle y es una
curva que va desde un circulo hasta un cuadrado y viceversa. En el caso anisotrépico que
se presenta a continuacion [[79], se puede mapear un rectdngulo a una elipse. La curva de
un squircle es

332 y2 521,2,!/2

2tE g
donde o y 3 son los lados del rectdngulo, o bien, el semieje mayor y semieje menor de
la elipse, de acuerdo al caso limite correspondiente y dependiendo de la orientacién de

la curva. El pardmetro de cuadradez s toma valores 0 > s > 1, donde se recupera un
rectangulo si s = 1 y una elipse cuando s = 0.

(5.1)

Se tiene la capacidad de computo para evolucionar la dindmica a durezas muy altas (pro-
bado hasta h = 100) y tiempos muy grandes (del orden de 10° pasos de computadora). Sin
embargo, puede llegarse a requerir grandes cantidades de poder de computo. Los cdlculos
mostrados a continuacién se realizaron en un equipo con 256gb de memoria RAM, que
permite completar las tareas en un tiempo razonable. Conociendo el potencial que rige la
dindmica de una particula dentro del billar, y por tanto las ecuaciones de movimiento de
Hamilton, esta herramienta numérica permite resolver el billar suave. Por una parte, ésta
integra las ecuaciones de movimiento que dependen de la dureza del pozo de potencial
h € (0, 00). Por ejemplo, para el billar suave de squircle se muestran unas trayectorias en

Figura 2: Trayectorias en un billar suave de squircle mostradas en color verde dada una
condicidn inicial (flecha negra) para los pardmetros de dureza y cuadradez: a) h = 2.5y
s = 0 (billar de elipse), h =8y s =0.5,h =25y s =0.8,h =8y s = 0.99. En negro
se muestra la curva de nivel correspondiente a energia cero la cual se corresponde con la
frontera en el caso de paredes duras.
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Figura 3: Comparacién por columnas entre las secciones de Poincaré de un billar suave
de elipse que se encuentra en la literatura [27] (fila superior) y las secciones de Poincaré
(fila inferior) para los mismos parametros pero calculados con las herramientas numéricas
desarrolladas en la tesis de maestria. En ambos casos £ = 0,a = 1y b = /1 — 0.722,
que son el semieje mayor y menor, respectivamente. Mientras que el pardmetro de dureza
toma los valores: a) h = 1,b) h = 1.7,¢) h =25y d) h = 6.

la figura 2] donde se modulan de diferentes formas la dureza del potencial y la cuadradez
y puede observarse como en los casos de dureza mds grande, las trayectorias tienden a
lineas rectas.

Por otro lado, también se tiene la capacidad de calcular secciones de Poincaré. Esta he-
rramienta parte de la evolucién de trayectorias y la identificacion de puntos que cruzan
la hipersuperficie de energia constante establecida.. En el caso de billares el corte que
se hace es sobre el llamado espacio de colisiones, tomando en cuenta que para billares
suaves los choques ocurren con las equipotenciales del pozo. Cada punto de la seccion
de Poincaré representa una colisién en (6, py,) que son el dngulo polar y el momento
tangente respecto a la curva equipotencial donde ocurre el choque. Esta herramienta se
ha verificado con secciones de Poincaré de billares suaves, presentes en la literatura (ver

figura3).

Ademas, se tiene la capacidad numérica de calcular el maximo exponente de Lyapunov en
billares suaves (ver figurafd). A partir de evolucionar un vector que cuantifica el ritmo de
separacion de dos condiciones iniciales infinitesimalmente cercanas. Para evitar desbor-
damiento numérico, se renormaliza recurrentemente y asi permite evoluciones a tiempos
muy largos, lo que es necesario para el estudio dindmica cldsica de un billar suave.

Se ha implementado una herramienta numérica que da la solucion estacionaria para billa-
res cuanticos duros: circunferencia, elipse, squircle y estadio de Bunimovich. Este es el
caso mads sencillo de un billar cudntico. En la figura[5|se muestran algunos valores propios
a manera de ilustracion de la herramienta numérica desarrollada, la cual consiste en resol-
ver la ecuacién de Helmholtz (1.3)) con condiciones de contorno utilizando el método de
diferencias finitas. Cada geometria requiere de implementar con cuidado las condiciones
de contorno tipo Dirichlet, en ese sentido, recae la principal complejidad de este méto-
do. También se puede abordar este problema resolviendo analiticamente la ecuacién de
Helmholtz, sin embargo, se necesitan funciones especiales acordes a la geometria de la

13 PROYECTO PREDOCTORAL



5 AVANCES

A A
0 01 02 03 04 05 0.6 um
1.0
08
06
04

0.2
1.0
0.8
0.6
04
02
1.0
0.8
086,
0.4
0.2

1.0
08
0.6

Figura 4: Mapa de caos y regularidad con exponentes de Lyapunov para un billar de squir-
cle. En el eje vertical se tiene un pardmetro geométrico que estira o contrae la frontera del
billar y en el eje horizontal se tiene el pardmetro de dureza. Primer columna: calculo del
maximo exponente de Lyapunov promediado sobre diferentes condiciones iniciales alea-
torias A. Segunda columna: el valor més grande del maximo exponente de Lyapunov para
un conjunto de condiciones iniciales aleatorias \n.x. Se varia el pardmetro s del billar
yendo de una elipse hasta casi completamente rectangular: a)-b) s = 0.0, ¢)-d) s = 0.3,
e)-f) s = 0.5, g-h) s = 0.8,1)-j) s = 0.9. Se fija ' = 0 en todos los casos. Cada co-
lumna maneja una escala de color con diferente valor maximo para observar variaciones
muy sutiles que de otra forma serfan dificiles de apreciar. Utilizar este tipo de mapas de
parametros permite evidenciar la aparicion de caos o regularidad acorde a cémo un paré-
metro se module. Parte inferior: un mallado mds fino para apreciar con mayor precision
las regiones con exponente de Lyapunov cero.

a) b) c) d)
Figura 5: Soluciones estacionarios para el cuadrado de la funcién de onda |,,,|* en un
billar cudntico para diferentes fronteras: a) circular (|11 ¢|%), b) eliptica (|1 6|%), ¢) squir-

cle (|127]?) y d) estadio de Bunimovich (|1 1]?). La escala de color va desde azul (cero
probabilidad) hasta blanco (mayor probabilidad).
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frontera lo cual no se tiene en todos los casos.

A manera de comprobacién de las herramientas a desarrollar en este trabajo, se tomard
como referencia el articulo de Perttu Luukko et al. [80] donde caracterizan cicatrices
cudnticas en pozos de potencial bidimensionales suaves con geometria circular. Tener un
punto de comparacion serd de gran ayuda para afrontar los primeros retos de este proyecto.
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Calendario de actividades

ACTIVIDADES 24|25|25|25|26 /26|26 |27 27|27 |28

Investigacién documental.

Identificacién del problema dindmico,
tanto cldsico como ctantico.

Andlisis espectral de billares cuénticos
duros.

Meétodos para cuantizar un billar suave.

Cursar UEAs Trabajo de Investigacion

Estudiar cuantificadores de cicatrizacion
en los billares duros y suaves.

Estudiar cuantificadores de cicatrizacion
de muchos cuerpos.

Estudio sobre el principio de correspon-
dencia clasico-cuantico mediante los bi-
llares desarrollados.

Inspeccién de la viabilidad de contrastar
los resultados obtenidos con realizacio-
nes experimentales existentes.

Escritura de un articulo de investigacion.

Escritura de la tesis.

Disertacion

Tabla 1: Cronograma de actividades de investigacion
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