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5.1. Función caracteŕıstica de Moyal . . . . . . . . . . . . . . . 31
5.2. Ordenamiento de operadores â y â† . . . . . . . . . . . . . 33
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1. Introducción.

La f́ısica es la rama de la ciencia que se dedica a estudiar los fenóme-
nos que ocurren en la naturaleza, desde el movimiento de los planetas
hasta las interacciones de las part́ıculas más diminutas. Tradicionalmen-
te, la mecánica clásica ha sido la herramienta principal para describir el
comportamiento de los objetos en el mundo macroscópico (objetos gran-
des que podemos ver y tocar), utilizando conceptos como la posición, la
velocidad y la enerǵıa para predecir su evolución con total precisión.

Sin embargo, a principios del siglo XX, los cient́ıficos se encontraron
con que estas leyes no eran suficientes para explicar el comportamien-
to de la materia a escalas microscópicas, como el de los átomos y las
part́ıculas subatómicas. Fue entonces que surgió la mecánica cuántica,
una nueva teoŕıa que revolucionó nuestra comprensión del universo plan-
teando preguntas y respuestas nuevas e innovadoras.

Una de las diferencias fundamentales entre ambas teoŕıas es la for-
ma en que describen el estado de un sistema. En la mecánica clásica, el
estado de un sistema se representa en un espacio fase, donde cada pun-
to (q,p) representa una configuración posible, definida por el vector de
coordenadas generalizadas (q) y el vector de momentos conjugados (p)
de todos los grados de libertad del sistema. Conocer estos dos valores de
manera precisa en un instante dado nos permite predecir el futuro del
sistema con total exactitud. Sin embargo, aunque esta descripción es ge-
neral, por simplicidad, en el desarrollo de este trabajo nos restringiremos
a sistemas de un solo grado de libertad. Por lo que, se usará la notación
escalar (q, p) para hacer referencia a las coordenadas del espacio fase.

A diferencia de la mecánica clásica, la mecánica cuántica no per-
mite conocer simultáneamente la posición y el momento lineal de una
part́ıcula con total precisión. Esto se debe al principio de incertidumbre
de Heisenberg, que establece que cuanto más precisamente se conoce una
de estas propiedades, menos se conoce la otra. Debido a esta limitación,
en la mecánica cuántica el estado de un sistema no se puede describir
con un punto en el espacio fase. En su lugar, se utiliza una función de
onda, que puede ser dependiente de la posición (ψ(q)) o del momento
(ϕ(p)), pero no de ambas al mismo tiempo.

Por esta limitación impuesta por el principio de incertidumbre de
Heisenberg, no es posible definir una distribución de probabilidad en el
espacio fase cuántico de la misma manera que en la mecánica clásica.
Esto se debe a que no existe un punto exacto que represente la posición
y el momento simultáneamente, como śı ocurre en la mecánica clásica.
Lo que es posible es que un punto en este espacio represente el valor
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esperado de un operador en ese espacio.
Por otra parte, en la formulación estándar de la mecánica cuántica,

la densidad de probabilidad en el espacio de posiciones, ρ(q), es dada por
ρ(q) = |ψ(q)|2, mientras que, en el espacio de momentos, ρ(p) = |ϕ(p)|2.
Sin embargo, existe un tipo de funciones, llamadas funciones de cuasi-
probabilidad que pueden expresarse en términos de ambas variables,
P (q, p), y tienen cierta semejanza con las funciones de distribución en el
espacio fase ya que permiten expresar promedios cuánticos matemática-
mente parecidos a los clásicos, de modo que pueda facilitarse el abordar
este problema.

Cabe mencionar que dichas funciones no son propiamente una distri-
bución de probabilidades como tal, ya que pueden tomar valores ne-
gativos. No obstante, resultan ser una herramienta matemática muy
poderosa y útil para el estudio de sistemas cuánticos, ya que permite
calcular promedios y analizar el comportamiento de sistemas de este ti-
po en términos de las variables canónicas de posición q y momento p,
además de brindar información acerca de las posibles conexiónes entre
la mecánica clásica y cuántica.

Algunas de estas funciones de cuasi-probabilidad son atribuidas a
Kodi Husimi (1909–2008), Roy J. Glauber (1925–2018) y Eugene Wigner
(1902–1995), siendo este último quien propuso la función de Wigner, la
cual se tratará con mayor detalle en este trabajo, sin embargo, el motivo
para usar una u otra función es mera conveniencia.

2. Distribución de Wigner.

Esta distribución (también llamada función de Wigner) es, en reali-
dad, una representación de un sistema cuántico en términos de una fun-
ción en el espacio fase. Esto es útil para visualizar el comportamiento de
los estados cuánticos de manera semejante a como se hace en la mecánica
clásica.

En general, para un sistema en un estado mixto representado por
una matriz de densidad ρ(q′′, q′) (y por ende, un operador ρ̂ asociado,
conocido como operador de densidad), la función de Wigner está definida
como [1, 2]:

W (q, p) =

∫ 〈
q +

1

2
y

∣∣∣∣ ρ̂

2πℏ

∣∣∣∣ q − 1

2
y

〉
e−ipy/ℏdy. (1)
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Aqúı, ℏ = h
2π es la constante de Planck reducida. Es notable que

esta ecuación es la transformada de Fourier de ρ̂ con respecto a la posi-
ción. Cabe mencionar que, según la normalización empleada, la expresión
para W (q, p) podŕıa tomar una forma ligeramente distinta, sin embar-
go, la elección de una u otra normalización depende de la convención
de unidades empleada (por ejemplo, el uso de unidades atómicas donde
ℏ = 1) o para simplificar el cálculo de las distribuciones marginales de
probabilidad.

Puede interpretarse la Ec. (1) al asociarse con la descripción del mo-
vimiento de una part́ıcula de una posición hacia otra (q′ → q′′). Aśı, de
manera análoga a la transición de un átomo en el nivel n′ hacia el n′′,
en el que realmente no importa cómo es el movimiento en dichos niveles
sino el salto que se da entre ellos, este cambio de posición estaŕıa defini-
do por una distancia relativa y ≡ q′′ − q′. De este modo, el elemento de
matriz ⟨q′′|ρ̂|q′⟩ representa la relación espacial entre dichos puntos [2],
siendo y = (q′ + q′′)/2 el centro del salto, lo cual incita a pensar en las
coordenadas q′ y q′′ como [2]:

q′ = q − 1

2
y, q′′ = q +

1

2
y.

Dicho esto, queda una mejor comprensión de la definición de la fun-
ción de Wigner, Ec. (1), que se puede entender como una representación
del estado de un sistema cuántico en el espacio fase.

Si ahora se considera un estado puro, es decir, un sistema caracteri-
zado completamente por un único vector de estado, con función de onda
dependiente de la posición ψ(q), con un operador de densidad asociado
ρ̂ = |ψ⟩⟨ψ|, esta ecuación se simplifica a:

W (q, p) =
1

2πℏ

∫
ψ∗
(
q +

1

2
y

)
ψ

(
q − 1

2
y

)
e−ipy/ℏdy. (2)

Por supuesto, la función de Wigner, Ec. (1), puede generalizarse a n
dimensiones [3, 4], extensión necesaria para describir sistemas con múlti-
ples grados de libertad, como el movimiento en el espacio tridimensional.
A lo largo del texto, las integrales se harán sobre todo el espacio y, a
menos que se indique lo contrario, se trabajará con estados puros.
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2.1. Operador de Wigner y el operador de paridad
desplazada

Además de su definición integral, la función de Wigner W (q, p) se
puede expresar de una forma alternativa a través del operador de Wigner,
Ŵ (q, p). Este operador, también conocido como el operador de paridad
desplazada [1], es una herramienta útil en el cálculo y la interpretación
de la función de Wigner.

La razón de este nombre reside en la forma en que el operador está
construido. Se puede entender como una combinación del operador de
desplazamiento y el operador de paridad.

El operador de paridad Π̂ es un operador que invierte la posición y
el momento de un sistema, reflejando el estado a través del origen, como
si fuera un espejo. Se define de la siguiente manera:

Π̂ =

∫
dq| − q⟩⟨q| =

∫
dp|p⟩⟨−p| = 1

2ℏ

∫
dk

∫
e

i
ℏ (kq̂+sp̂)ds. (3)

Por otro lado, el operador de desplazamiento, D̂(q, p) = e
i
ℏ (pq̂−qp̂),

tiene la función de desplazar el sistema hacia el punto (q, p) del espacio
fase.

Combinando ambos operadores, es posible definir el operador de pa-
ridad desplazada, Π̂q,p, que no es más que el operador Π̂ después de

haber sido desplazado por D̂(q, p) hacia el punto (q, p) [5, 6], esto es:

Π̂q,p = D̂(q, p)Π̂D̂†(q, p). (4)

Debe hacerse mención de la estrecha relación del operador de Wigner
con esta paridad. Puede mostrarse que Ŵ es proporcional a Π̂q,p (véase
el Apéndice A). Si se expresa este operador en la base de posiciones, se
obtiene la forma integral [1]:

Ŵ (q, p) ≡
∫ ∣∣∣∣q − 1

2
s

〉
e−iqp/ℏ

〈
q +

1

2
s

∣∣∣∣ ds. (5)

A pesar de tener una definición diferente, el efecto f́ısico de ambos
operadores es el mismo: la acción de reflexión alrededor de un punto
(q, p) en el espacio fase cuántico. Por parte del operador de Wigner, esto
se ilustra mediante [1]:

Ŵ (q, p)|q′⟩ = |2q − q′⟩, Ŵ (q, p)|p′⟩ = |2p− p′⟩. (6)
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Estas relaciones muestran que el operador de Wigner toma un estado
con posición q′ y lo transforma en un estado con posición 2q− q′, lo cual
es precisamente la definición de una reflexión alrededor del punto q. Lo
mismo ocurre con el momento.

La función de Wigner de un estado cuántico, representado por el
operador de densidad ρ̂ se calcula usando el operador de Wigner a través
de la relación [1]:

W (q, p) = Tr

[
ρ̂

2πℏ
Ŵ (q, p)

]
. (7)

Para un estado puro |ψ⟩, donde ρ̂ = |ψ⟩⟨ψ|, la expresión anterior
se puede reescribir de forma equivalente usando el operador de paridad
desplazada Π̂q,,p [5, 6]:

W (q, p) =
2

ℏ
⟨ψ|Π̂q,p|ψ⟩ =

2

ℏ
⟨ψ|D̂(q, p)Π̂D̂†(q, p)|ψ⟩. (8)

La conexión entre estas dos expresiones se debe a la relación de pro-
porcionalidad entre los operadores, Ŵ (q, p) = 4πΠ̂q,p. Esta relación se
discute con mayor detalle en el Apéndice A.

La relación entre la función de Wigner en términos de Π̂q,p tiene
una interpretación f́ısica: La función de Wigner en el punto (q, p) mide
la superposición entre el estado ψ con su reflejo en el espacio fase [5].
Esto se debe a que, primero, Π̂q,p refleja el estado |ψ⟩ y posteriormente,
cuando ya se tiene este estado reflejado, se realiza el producto interno
entre el estado reflejado y el original.

3. Propiedades de la función de Wigner

Tras haber dado la definición de la función de Wigner y los conceptos
fundamentales de su construcción, es útil ahora analizar sus propieda-
des matemáticas fundamentales, las cuales la distinguen de otras dis-
tribuciones y, además, proporcionan una visión más profunda sobre su
comportamiento en sistemas cuánticos.

3.1. Hermiticidad y realidad

La función deWigner es una función real, es decir,W (q, p) =W ∗(q, p)
[3], de modo que para un estado puro, debe ser una forma hermı́tica del
estado |ψ(q)⟩.
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A pesar de que los estados cuánticos y los operadores son complejos,
esta función siempre es real debido a que su definición es dada mediante
una integral que involucra el producto de la función de onda con su
complejo conjugado. Esto implica que su interpretación podŕıa ser la de
una densidad, aunque no necesariamente en el sentido clásico, ya que,
no debe olvidarse que W (q, p) puede adquirir valores negativos.

3.2. Proyección sobre q y p

Una propiedad que apoya la interpretación de la función de Wigner
como un análogo de la densidad de probabilidad en el espacio fase es
que sus proyecciones sobre los ejes de posición (q) o de momento (p)
recuperan las distribuciones de probabilidad marginales.

Integrar esta función sobre cada valor posible de p resulta en la den-
sidad de probabilidad de hallar la part́ıcula en la posición q:

∫
W (q, p)dp = |ψ(q)|2 = ⟨q|ρ̂|q⟩ ≡W (q). (9)

Análogamente, la densidad de probabilidad del momento |ψ(p)|2 se
obtiene si se integra sobre cada valor posible de la posición q [2].

Esto quiere decir que la proyección de W (q, p) sobre alguno de los
ejes, q o p, da la distribución de probabilidad en esa variable. Estos
valores coinciden con las predicciones estándar de la mecánica cuántica,
es decir, las densidades |ψ(q)|2 y |ϕ(p)|2 [4].

3.3. Normalización

Para que la función de Wigner pueda tomar un sentido “probabiĺısti-
co”, también debe cumplirse la normalización de esta cuasi-probabilidad
[3, 4], es decir:

∫
dq

∫
W (q, p)dp = Tr[ρ̂] = 1. (10)

Junto con el resultado de la Ec. (10), se tiene que Tr[ρ̂2] ≤ 1, cum-
pliendose la igualdad únicamente en el caso de estados puros (los cuales
serán objeto de estudio en este trabajo), entonces, para estos estados:
ρ̂2 = ρ̂ [4].
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3.4. Invarianzas

La función de Wigner, también cumple con ciertas caracteŕısticas,
como la invarianza Galileana, es decir, si la función de onda del sistema
se desplaza espacialmente o es multiplicada por una fase, W (q, p) se
transforma de manera correspondiente [3].

Además, también goza de invarianza frente a reflexiones espaciales y
temporales, de modo que si se invierten las coordenadas espaciales, o se
toma el complejo conjugado de la función de onda, la función de Wigner
también se transforma de manera semejante [4]. Formalmente, esto se
puede ver en la Tabla 1:

Transformación en ψ(q) Transformación en W (q, p)

ψ(q) → ψ(q + a) W (q, p) →W (q + a, p)

ψ(q) → eip
′q/ℏψ(q) W (q, p) →W (q, p− p′)

ψ(q) → ψ(−q) W (q, p) →W (−q,−p)

ψ(q) → ψ∗(q) W (q, p) →W (q,−p)

Tabla 1: La función de Wigner es una invariante de Galileo, lo que implica
que obedece estas reglas de transformación.

3.5. Ecuación de movimiento clásica

Una propiedad importante de la función de Wigner es su capacidad
para describir la evolución temporal de un sistema cuántico en el espa-
cio fase. Para sistemas cuánticos que tienen un potencial no mayor a un
polinomio de segundo orden, como el oscilador armónico cuántico o una
part́ıcula bajo la acción de una fuerza constante, la evolución temporal
de la función de Wigner, W (q, p.t), coincide con la ecuación de Liouville
clásica, fundamental en mecánica estad́ıstica, la cual describe la conser-
vación de la densidad de probabilidad a lo largo de las trayectorias del
sistema en el espacio fase [4]:

∂W (q, p)

∂t
= − p

m

∂W (q, p)

∂q
+
∂U(q)

∂q

∂W (q, p)

∂p
. (11)

En esta ecuación, la derivada temporal ∂W (q,p)
∂t , representa la evolu-

ción de la función de Wigner en el tiempo. Aunque hasta ahora se ha
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considerado la función de Wigner independiente de t, debe reconocerse
que en general, el estado cuántico de un sistema puede cambiar, y por
lo tanto, la función de Wigner también puede depender expĺıcitamente
del tiempo.

Particularmente, para una part́ıcula libre, se tiene para el potencial
U(q) = 0. En este caso, la ecuación de Liouville se simplifica a la ecuación
de movimiento clásica para la función de Wigner [3]:

∂W (q, p)

∂t
+

p

m

∂W (q, p)

∂q
= 0. (12)

Aunque, en general, no se tratará con la función de Wigner depen-
diente del tiempo, más que de una manera superficial y en secciones
espećıficas, hacer mención de su existencia es importante.

3.6. No positividad (cuasiprobabilidad)

La función de Wigner presenta valores negativos en ciertos casos [3,
4, 7–9], caracteŕıstica que la define formalmente como una distribución
cuasi-probabiĺıstica [4, 8]. Este comportamiento se manifiesta claramente
al analizar una propiedad fundamental: la traza del producto de dos
operadores de densidad (que representan los estados del sistema).

Esta propiedad consiste en que, en particular, para dos estados puros
ortogonales |ψ1⟩ y |ψ2⟩, con operadores asociados ρ̂ψ1

y ρ̂ψ2
, la traza es

determinada por el producto de sus respectivas funciones de Wigner
integrado sobre el espacio fase [2, 3]:

Tr(ρ̂ψ1 ρ̂ψ2) = |⟨ψ1|ψ2⟩|2 = 2πℏ
∫
dq

∫
Wψ1(q, p)Wψ2(q, p)dp. (13)

Aqúı, las distribuciones W (q, p) son definidas como en la Ec. (1). La
no-positividad de la función de Wigner puede hacerse notar al observar,
debido a que los estados cuánticos deben cumplir la normalización a la
unidad, es decir, |⟨ψ|ψ⟩|2 = 1, entonces:

∫
dq

∫
Wψ1

(q, p)Wψ2
(q, p)dp =

{
1

2πℏ , si ψ1 = ψ2

0, si ψ1 ̸= ψ2

. (14)

Es prudente hacer énfasis en el significado de estos resultados: El
primero implica que la concentración de esta probabilidad no puede ser
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arbitraria, ya que tiene un valor finito. Esto es debido al principio de in-
certidumbre de Heisenberg, ∆q∆p ≥ ℏ/2; conocer simultáneamente, con
exactitud, los valores de q y p implicaŕıa una violación a este principio,
pues se tendŕıa ∆q∆p = 0, además, la función de Wigner obtendŕıa un
valor mayor que 1

2πℏ , en particular,Wψ(q, p) = δ(q−q0)δ(p−p0), lo cual
representa el conocimiento simultáneo, con exactitud, de los valores de
q y p (un punto clásico) [3].

Por su parte, el resultado nulo, implica que W (q, p) no puede ser po-
sitiva en todo punto del espacio fase, ya que, de no ser aśı, la función no
podŕıa anularse a menos que ψ1 = 0 o ψ2 = 0, de modo que solamente
una combinación de valores positivos y negativos de la distribución de
Wigner podŕıa anular la Ec. (13) [3]. Esto refleja la naturaleza no clásica
de esta distribución. No obstante, esto no implica que no existan funcio-
nes de Wigner que puedan ser positivas en cualquier lugar del espacio
fase, por mencionar sólo un ejemplo, los estados coherentes, los cuales se
tratarán con mayor detalle posteriormente.

El lector podŕıa cuestionarse acerca del significado de las regiones
en que W (q, p) < 0 o el motivo de que esto sea aśı. Estas son debidas
a la superposición de estados y la naturaleza no clásica de los estados
cuánticos, a través de reflejar la interferencia destructiva entre los com-
ponentes de la función de onda [7, 8, 10]. Esta propiedad permite pensar
una superposición de estados cuánticos como una superposición en el
espacio de fases [8].

3.7. Simetŕıa bajo intercambios q ⇄ p

Aunque la función de Wigner W (q, p), Ec. (1), comúnmente se ex-
presa partiendo de la representación de posición, es decir, utilizando
eigenestados de posición, la formulación de la mecánica cuántica en el
espacio fase, que busca un tratamiento más equiparable (o simétrico)
para las variables de posición y momento, permite que esta función tam-
bién pueda ser obtenida o expresada de manera equivalente utilizando
eigenestados de momento.

La función de Wigner se puede expresar en términos de la transfor-
mada de Fourier de la función de onda, permitiendo aśı, intercambiar
entre representaciones, ya sea en términos de ψ(q) o ϕ(p) y sus respec-
tivos conjugados [3]. De esta manera, la Ec. (2) puede expresarse en
términos del momento como:

W (q, p) =
1

2πℏ

∫
ϕ∗
(
p+

1

2
p′
)
ϕ

(
p− 1

2
p′
)
e−iqp

′/ℏdp′. (15)
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4. Estados cuánticos relevantes

Debido a que la función de Wigner, W (q, p), permite representar
estados cuánticos en el espacio fase de posiciones y momentos, es una
herramienta muy útil para visualizar y comprender las propiedades de
distintos estados. Algunos de los más relevantes, relacionados con la fun-
ción de Wigner, son los estados de Fock, los cuales son elementos clave
para la teoŕıa cuántica de campos [8] y sirven como un pilar en la cons-
trucción de algunos otros, como los estados coherentes y los estados
comprimidos, como se verá a continuación.

El análisis de la función de Wigner para cada uno de estos estados
revela caracteŕısticas distintivas en el espacio fase, mostrando cómo la
representación visual puede ayudar a comprender sus propiedades funda-
mentales, su grado de no-clasicidad y la presencia de fenómenos cuánti-
cos.

4.1. Estados de Fock

Un estado de Fock |n⟩ (también conocido como estado de número), es
un estado f́ısico con una cantidad bien definida (n) de fotones (o, en ge-
neral, bosones), en el que las amplitudes de los campos electromagnéticos
no están bien definidas debido la no conmutación entre los operadores
de creación (â†) y aniquilación (â) con el operador de número (N̂ = â†â)
[7–9]. Esto es aśı ya que, si bien existe un número n de fotones en el
sistema, la aplicación de alguno de estos dos operadores cambiará esta
cantidad sucesivamente con cada aplicación.

Para un oscilador de masa unitaria y frecuencia angular ω, estos
operadores de creación y aniquilación se definen como:

â =
1√
2ℏω

(ωq̂ + ip̂), â† =
1√
2ℏω

(ωq̂ − ip̂). (16)

En donde ℏ es la constante de Planck reducida, la cual, aunque se
mostrará expĺıcitamente en las ecuaciones siguientes, para la ejecución
de los códigos que se utilicen, se hará ℏ = 1. Además, estos operadores
son no conmutativos entre śı, cumpliendo con la relación:

[â, â†] = 1. (17)
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La acción que tienen los operadores de creación y aniquilación sobre
los estados de Fock es [8, 9]:

â†|n⟩ =
√
n+ 1|n+ 1⟩, â|n⟩ =

√
n|n− 1⟩. (18)

Por supuesto, los operadores de posición (q̂) y momento (p̂) (también
conocidos como operadores de cuadratura) pueden escribirse en términos
de los de creación y aniquilación, a saber:

q̂ =

√
ℏ
2

(
â† + â

)
, p̂ = i

√
ℏ
2

(
â† − â

)
. (19)

El estado de vaćıo, |0⟩, resulta de suma importancia, pues los es-
tados de Fock pueden generarse a partir de este estado base mediante
aplicaciones sucesivas del operador de creación [8, 10]:

|n⟩ = (â†)n√
n!

|0⟩. (20)

La representación de los estados de Fock, en el espacio de posiciones,
es dada por la función de onda [10, 11]:

ψn(x) =
1√
2nn!

( ω
πℏ

)1/4
Hn

(√
ω

ℏ
x

)
e−

ωx2

2ℏ . (21)

En donde Hn(x) son los polinomios de Hermite, los cuales describen
las oscilaciones caracteŕısticas de los estados de número, (Fig. 1) (notar
que en esta figura se ha tomado ω = 1, la cual, en general se tomará con
ese valor a menos que se indique lo contrario), por otra parte, la Fig. 2
muestra la densidad de probabilidad |ψn(q)|2 para algunos valores de n.

En general, la Ec. (21) describe la distribución espacial de estos es-
tados. Estos son fundamentales para la construcción de otros estados,
como los coherentes, que pueden interpretarse como una superposición
ponderada de |n⟩.

Los estados de Fock forman una base completa del espacio de Hilbert
asociado a un oscilador armónico cuántico. El espacio de Fock proporcio-
na una base ortonormal fundamental (⟨m|n⟩ = δmn) [7], aśı, en un sen-
tido f́ısico, la descripción cuántica de un campo electromagnético puede
representarse mediante la expansión del operador de densidad en la base
de estados de Fock, la cual incluye términos diagonales y no diagonales
[7].
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Figura 1: Función de onda para los cuatro primeros estados de Fock. Se
ha tomado ω = ℏ = 1.

Figura 2: Densidad de probabilidad de la función de onda para los pri-
meros cuatro estados de Fock. Se ha tomado ω = ℏ = 1.
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Figura 3: Función de Wigner para los primeros cuatro estados de Fock
en el espacio fase. Notar que la primera (correspondiente al estado de
vaćıo) es completamente positiva. Por otra parte, para todas las siguien-
tes se observan patrones anulares debidos a regiones positivas y negativas
equidistantes del origen. Conforme n incrementa, estos “anillos” también
incrementan en cantidad, pero no en magnitud.

La función de Wigner asociada a los estados de Fock es tal que [8]:

Wn(α) =
2

π
(−1)nLn(4|α|2)e−2|α|2 . (22)

El hecho de que en esta ecuación aparezcan polinomios de Lague-
rre, Ln(ξ)

1, es lo que explica las fluctuaciones cuánticas de este tipo de
estados, de manera que existen ciertas regiones en las que W adquiere
valores negativos [8]. La Ec. (22) se puede visualizar gráficamente en las
Fig. 3 y 4.

1Los polinomios de Laguerre se definen mediante la fórmula de Rodrigues como:
Ln(x) =

ex

n!
dn

dxn (xne−x).
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Figura 4: Función de Wigner para los cuatro primeros estados de Fock.
En esta visión tridimensional puede verse de forma más clara que el
patrón anular de la figura 2D corresponde a regiones positivas y negativas
de la función de Wigner.
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Particularmente, para el estado |0⟩, la función de Wigner asociada es
dada por:

W0(α) =
2

π
e−2|α|2 . (23)

Es posible notar que esta última ecuación representa una función
Gaussiana2 (una función con la caracteŕıstica forma de campana simétri-
ca y decaimiento exponencial rápido), la cual coincide con lo que se ob-
serva en las Fig. 3 y 4. Los campos fluctuantes en sistemas cuánticos
mantienen una relación ı́ntima con los estados de número.

Para el caso del campo electromagnético, es útil definir un operador
de campo genérico Ĝ = gâ + g∗â† (donde g es una función dependiente
de la posicion). Si se considera Ĝ como una componente de cualquiera
de los campos (cuantizados) Ê, B̂ o Â, se tendrá que [7, 8]:

⟨n|Ĝ|n⟩ = 0. (24)

Lo que implicaŕıa que los campos Ê y B̂ tienen un valor promedio
nulo en un estado de número, sin embargo, presentan fluctuaciones sig-
nificativas [2, 7]. Dichas fluctuaciones son resultado de las propiedades
cuánticas del sistema.

4.2. Estados Coherentes

Ya se han mencionado las propiedades de la función de Wigner,
W (q, p), y algunas formas alternativas que toma para describir un esta-
do cuántico en el espacio de fases. Ahora, es conveniente profundizar un
poco en los estados coherentes, ya que, a menudo son usados en la óptica
cuántica y juegan un papel relevante en la transición entre la mecánica
cuántica y la clásica, permitiendo una representación cuasi-probabiĺısti-
ca del estado en el espacio fase mediante la función de Wigner. Además,
tenerlos en mente puede facilitar el entendimiento de las propiedades de
esta cuasi-probabilidad sin que luzcan tan abstractas.

Una caracteŕıstica muy importante de los estados coherentes es que
minimizan la relación de incertidumbre de Heisenberg [8, 9], además
cuentan con la propiedad de mantener una fase bien definida durante un

2Matemáticamente, una función Gaussiana se define como f(x) = ae
− (x−b)2

2c2 ,
donde a es la altura del pico, b es la posición del centro y c es la desviación estándar.
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periodo de tiempo determinado debido a que están formados por una
cantidad indefinida de fotones, en contraste con los estados de Fock, los
cuales poseen una fase completamente aleatoria [9].

Estos estados pueden describirse como un estado en el que el paquete
de ondas del estado fundamental se ha desplazado en el espacio de fases
(q, p). Aśı, pueden generarse haciendo uso del operador de desplazamiento

D̂(α) = eαâ
†−α∗â, aplicándolo sobre el estado de vaćıo, es decir, el estado

|n⟩ para n igual a cero [3, 8, 9, 12], esto es:

|α⟩ = D̂(α)|0⟩ = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n⟩. (25)

Este operador, D̂(α), desplaza el estado cuántico en una cantidad
y dirección α, de manera impĺıcita, esto indica que α ∈ C. Estas ca-
racteŕısticas permiten pensarlos como una especie de puente entre la
descripción clásica y cuántica de un sistema.

La acción del operador de desplazamiento sobre los operadores de
creación y aniquilación es [8]:

D̂†(α)âD̂(α) = â+ α,

D̂†(α)â†D̂(α) = â† + α∗.
(26)

En contraste con los estados de Fock, los cuales se utilizan para re-
presentar sistemas con cantidades discretas de enerǵıa, los estados cohe-
rentes, donde las fluctuaciones son mucho más reducidas, se vuelven una
herramienta muy útil al tratar de conectar la mecánica cuántica con la
clásica [2].

4.2.1. Construcción de los estados coherentes

Formalmente, un estado coherente |α⟩ se define como un eigenvalor
del operador de aniquilación, â [3, 7, 10, 12]:

â|α⟩ = α|α⟩. (27)

En donde α ∈ C describe tanto la amplitud como la fase del estado
coherente [8], en concreto, se tiene que α = q+ip√

2
= |α|eiθ, por supuesto,

aqúı θ representa la fase.

19



Figura 5: Distribución de probabilidad de un estado coherente con |α| =
4 en la base de Fock. Es notable que esta distribución está centrada cerca
de |α|2 = 16.

Los estados coherentes se describen como superposiciones de estados
de número |n⟩ ponderados por una distribución Poissoniana [7], lo que les
permite representar campos con mı́nima dispersión de cuadraturas (es
decir, ∆q∆p = ℏ

2 , ver Ec. (19)) y enerǵıa fluctuante, lo que los convierte
en los estados cuánticos más parecidos a las ondas clásicas [2].

Estos estados forman una base sobrecompleta en el espacio de Hil-
bert, lo que significa que, a pesar de que los elementos de la base no
son ortogonales entre śı, son suficientes para cubrir el espacio, por lo que
pueden usarse para representar cualquier estado del sistema cuántico [9].

En la Ec. (25) se muestra que estos estados son creados a partir de
aplicar D̂(α) al estado |0⟩, de modo que, al desarrollarse, también pueden
expresarse en términos de la base de estados de Fock, |n⟩, [3, 10] de la
siguiente manera:

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!
|n⟩. (28)

Esta representación para |α⟩ permite ver que el número de fotones
en un estado coherente no está definido de manera precisa (Fig. 5), sino
que fluctúa alrededor de un valor promedio. En concreto, al calcular la
varianza, se encuentra que dicho valor es (∆n)2 = |α|2 [7, 8].

20



En la Sección 4.1 se mencionó que la representación cuántica de un
campo electromagnético pod́ıa expresarse en términos de la base de Fock,
la cual incluye términos diagonales y no diagonales, bien, pues por una
parte, los términos diagonales ⟨n|ρ̂|n⟩ indican la probabilidad de que el
campo contenga una cantidad n de fotones, resultando en una represen-
tación útil para describir sistemas sin una fase bien definida, es decir,
útiles para representar campos incoherentes (es decir, que no presentan
coherencia) en los cuales los términos no diagonales de ρ̂ tienden a cero
[9], como pueden ser los sistemas en equilibrio térmico; por ejemplo, la
luz incandescente o la radiación de cuerpo negro, cuya distribución de
probabilidad sigue una distribución de Bose-Einstein y su varianza es
igual al número promedio de fotones (n) [8]. No obstante, los estados
incoherentes no solo pueden representarse con estados de Fock, |n⟩, sino
también con una mezcla estad́ıstica de estados coherentes |α⟩ con una
distribución Gaussiana, como la que brinda la representación P (α), tam-
bién conocida como representación de Glauber-Sudarshan (se hablará de
esto posteriormente, en la Sección 5.3.1).

Por otro lado, si los términos no diagonales tienen relevancia, enton-
ces su análisis resulta indispensable para un estado coherente |α⟩ (donde
α = q+ip√

2
) ya que, precisamente, los términos ⟨n|ρ̂|m⟩, con n ̸= m, con-

tienen la información referente a la fase del sistema debido a que un
estado coherente es una superposición de varios estados de número, de
manera que |α⟩ tiene una fase bien definida debido a que α tiene una fase
clara [2]. Esta coherencia hace que la representación de ρ̂ en términos
de estados de número sea complicada de trabajar ya que contiene una
cantidad de coeficientes que tiende al infinito [9].

No está de más recalcar que, a diferencia de los estados coherentes, los
estados de número tienen una fase indeterminada y carecen de términos
no diagonales significativos en la representación del operador de densidad
ρ̂ [7]. El hecho de que los estados coherentes preserven una fase bien
definida se refleja en la posibilidad de obtener un valor promedio no nulo
para el campo electromagnético [2].

En concreto, al expresar el operador de densidad en la base de número
como ρ̂ = Σn,mρnm|n⟩⟨m|, se tiene, efectivamente, una matriz, denomi-
nada como matriz de densidad. El hecho de que esta matriz contenga
únicamente términos diagonales (n = m) resulta en una descripción
matemática más sencilla, sin embargo, esto conlleva la pérdida de la
información de fase que caracteriza a los estados coherentes [7].
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4.2.2. Valor esperado del campo electromagnético

Como ya se ha mencionado, el campo electromagnético puede repre-
sentarse utilizando estados |n⟩ como base, o también a partir de estados
|α⟩.

Sin embargo, a diferencia de los estados de número, los estados cohe-
rentes permiten obtener un valor promedio no nulo para el campo en
un marco cuántico [2, 7]. Además, las fluctuaciones en estos estados son
mı́nimas, lo que explica por qué el comportamiento cuasi-clásico es do-
minante. El valor esperado del campo genérico Ĝ (mencionado en la Ec.
(24)) en un estado coherente se puede expresar como:

⟨α|Ĝ|α⟩ = αg + α∗g∗ = 2|α|Re(g) cos θ. (29)

Prestando atención, puede notarse que esta ecuación tiene una forma
semejante a la del campo clásico, mostrando una oscilación sinusoidal,
lo que permite interpretar los estados coherentes como estados cuánticos
muy cercanos a un comportamiento clásico [8]. Un ejemplo concreto es el
operador de campo eléctrico monomodo polarizado linealmente, Êx(r, t).
Su valor esperado en un estado coherente muestra expĺıcitamente la es-
tructura de onda clásica:

⟨α|Êx(r, t)|α⟩ = 2|α|
(

ℏω
2ϵ0V

) 1
2

sin(ωt− k · r− θ). (30)

Aqúı, el término entre paréntesis representa la amplitud de las fluc-
tuaciones de vaćıo, donde V corresponde al volumen de cuantización,
ϵ0 es la permitividad del vaćıo y k es el vector de onda que indica la
dirección de propagación con frecuencia ω.

Los estados coherentes tienen una representación muy intuitiva en el
espacio fase, ya que su función de Wigner asociada toma la forma de una
distribución Gaussiana centrada en el punto (Re(β), Im(β)), en donde β
representa al parámetro del estado coherente en cuestión [8]. A pesar de
oscilar, esta representación permite ver con mayor facilidad su similitud
con un sentido clásico de probabilidad.

Además de su capacidad para producir un valor esperado no nulo
del campo electromagnético, los estados coherentes permiten represen-
tar el sistema de forma cuasi-clásica, entendiendo esto como un compor-
tamiento que se asemeja al ĺımite clásico al presentar una distribución
de probabilidad positiva y localizada, a través de la función de Wigner,
como se ha mencionado anteriormente. En particular, para un estado
coherente |β⟩, dicha función es dada por [8]:
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W (α) =
2

π
e−2|α−β|2 . (31)

Aqúı α representa el punto en que se evalúa la función en el es-
pacio fase. Esta función siempre es positiva y refleja las caracteŕısticas
cuasi-clásicas de los estados coherentes, tales como la minimización del
principio de incertidumbre de Heisenberg y la ausencia de regiones nega-
tivas en su distribución, lo cual permite una interpretación casi directa
como densidad de probabilidad (Fig. 6). La similitud de esta ecuación
con la correspondiente al estado de vaćıo, W0(α), Ec. (23), permite ver
con claridad lo que se explica a través de la Ec. (25) acerca de que un
estado coherente es un estado de vaćıo desplazado.

Figura 6: Función de Wigner para un estado coherente desplazado a (1, 1)
en el espacio fase. Al comparar con la correspondiente para un estado
|0⟩, puede notarse que un estado coherente es, en realidad, un estado de
vaćıo desplazado.

Debido a que la Ec. (31) tiene un argumento negativo en la exponen-
cial, ésta decaerá, de manera que el valor máximo que puede tomar es
2
π . Sin embargo, este valor no es único, ya que, según la normalización
empleada para W , este máximo puede ser distinto, pero en todos los
casos, la situación es la misma: La función de Wigner no puede tomar
valores arbitrariamente altos.
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En este caso, cuando la función adquiere el valor máximo de 2
π , se ha

usado una normalización que es común cuando se trabaja con estados
coherentes y cuadraturas del campo electromagnético, como en el marco
de la óptica cuántica, en donde ℏ suele expresarse impĺıcitamente. Una
referencia bibliográfica de ello es [8].

4.2.3. Operadores de cuadratura

No está de más, hacer un énfasis breve acerca de lo que significan las
cuadraturas del campo electromagnético, y es que son las componentes
responsables de describir su comportamiento en términos de posición y
momento (o variables análogas) en el espacio fase. En el contexto de
la óptica cuántica —rama de la f́ısica que estudia los fenómenos en los
que la naturaleza cuántica de la luz y su interacción con la materia
son fundamentales— se suelen usar para describir las fluctuaciones del
campo, como en el caso del estudio del oscilador armónico.

Si bien es cierto que un fotón no es una part́ıcula con una posición
bien definida, sino una excitación del campo electromagnético, resulta
conveniente definir estas cuadraturas como un par de operadores que se
encuentren a una distancia angular de π

2 entre śı y que sean proporcio-
nales a â y â†, pero de manera que estos operadores de cuadratura se
vuelvan adimensionales [8], a saber, estos son los que se han definido en
la Ec. (19):

q̂ =

√
ℏ
2

(
â† + â

)
, p̂ = i

√
ℏ
2

(
â† − â

)
.

Algunos ejemplos f́ısicos que coinciden con la descripción de los es-
tados coherentes son los que se encuentran en la luz láser, en fenómenos
de superfluidez y superconductividad, por lo que su estudio es muy im-
portante en ramas como la óptica cuántica y la teoŕıa de la información
[8, 12].

La capacidad de estos estados para preservar la fase y presentar fluc-
tuaciones mı́nimas análogas a las de una onda clásica contrasta con la
naturaleza aleatoria de los estados incoherentes.

Las cuadraturas asociadas a la posición y el momento en la Ec. (19) se
pueden entender como una manera de visualizar el estado cuántico en el
espacio de fases, en el que la función de Wigner les da una representación
cuasi-probabiĺıstica. Como ya se ha mencionado, en términos de estas,

un estado coherente se puede expresar como α = ⟨q̂⟩+i⟨p̂⟩√
2

[8], lo que

implica que se centra en el punto (⟨q̂⟩, ⟨p̂⟩).
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Con base en lo anterior, es claro que tanto los estados coherentes
como los estados de número constituyen elementos fundamentales para
la representación de un estado cuántico en el espacio fase. A continuación
se profundizará un poco más en las distinciones entre ellos.

4.2.4. Distinción entre estados coherentes e incoherentes

A pesar de que tanto un estado coherente como una mezcla incohe-
rente de estados de número con una distribución de Poisson pueden
presentar un valor de la función de correlación de segundo orden igual
a la unidad, es decir, g2(0) = 1 (definida a continuación), la diferencia
fundamental radica, precisamente, en la coherencia de fase de los esta-
dos, ya que es esto lo que en verdad permite diferenciar entre un tipo y
otro [9].

Función de correlación g2(τ).

Es prudente mencionar que g2(0) es una medida de la probabilidad
de encontrar dos fotones en un tiempo determinado en el mismo estado
cuántico del campo electromagnético con respecto a encontrar uno solo.
Esta medida se define como [9]:

g2(0) =
⟨â†â†ââ⟩
⟨â†â⟩2

= 1 +
V (n)− n

n2
. (32)

En donde V (n) =
〈
(â†â)2

〉
− ⟨â†â⟩2.

De manera complementaria, g2(τ) describe la probabilidad de detec-
tarlos con un tiempo de retardo τ [8].

Ahora, la Ec. (32) describe la naturaleza del campo de la siguiente
manera [2, 8, 9]:

Si g2(0) > 1, se trata de un campo con agrupamiento (bunching) en
el que los fotones tienden a llegar en grupo, esto es g2(τ) < g2(0),
es decir, es más probable que los fotones se detecten a la par que
de manera separada, como en el caso de un campo térmico. Por
ejemplo, la luz que emite un bombillo.

Por otro lado, si g2(0) = 1, se tiene un estado coherente en el que
cada fotón se comporta de manera independiente y uniforme sin
agruparse. En tal caso se habla de una distribución de Poisson,
entonces V (n) = n. Un ejemplo de esto es la luz láser.
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Pero si g2(0) < 1, se tratará de un caso en que los fotones tien-
den a llegar de manera individual uno tras otro sin formar grupos
(antibunching), alegebraicamente g2(τ) > g2(0). Esto es una ca-
racteŕıstica de la naturaleza cuántica del campo electromagnético.
Dicho fenómeno sucede, por ejemplo, en sistemas que emiten un
solo fotón a la vez, los cuales pueden representarse con los estados
de número.

El valor dado por la Ec. (32) no es suficiente para distinguir entre un
tipo de estados u otro, ya que aunque este parámetro refleja la distri-
bución de fotones, no da información acerca de la fase, de modo que, a
pesar de que un estado coherente y uno incoherente con distribución de
Poisson comparten una distribución de probabilidad similar, el pasar del
tiempo muestra que ese último tendrá un comportamiento más aleatorio.

Para diferenciar entre este par de tipos de estados, es necesario rea-
lizar mediciones que consideren la fase del campo, como las cuadraturas
q̂ y p̂ [9]. Un ejemplo es la detección homodina, la cual puede estudiarse
en múltiples bibliograf́ıas, un par de ellas pueden ser [8] y [9].

En un estado coherente, las incertidumbres de estas cuadraturas (∆q
y ∆p) resultan ser el valor mı́nimo permitido por la relación de incer-
tidumbre de Heisenberg. Esto implica que el estado está máximamente
localizado en el espacio fase, lo cual permite que la fase esté definida con
la mayor precisión que la mecánica cuántica permite, a diferencia de una
mezcla térmica (incoherente) donde la distribución se dispersa en todas
direcciones, lo que implica la ausencia de una fase bien definida [9].

4.3. Estados Comprimidos

Los estados comprimidos representan una extensión de los estados
coherentes [9], y son fundamentales en la descripción de sistemas cuánti-
cos donde las fluctuaciones en una cuadratura, como la posición o el
momento, necesitan minimizarse por debajo de las que se asocian con
los estados coherentes. A diferencia de estos últimos que, como se ha vis-
to, mantienen una incertidumbre que es igual en ambas cuadraturas y
minimizan la relación de incertidumbre de Heisenberg, los estados com-
primidos las redistribuyen entre las cuadraturas de manera que alguna
de ellas puede reducirse por debajo del ĺımite de Heisenberg a costa de
aumentar las fluctuaciones en la cuadratura complementaria para respe-
tar la relación de incertidumbre ∆q∆p ≥ ℏ

2 [2, 9]. Esto significa que, a

diferencia de los estados coherentes,
〈
(∆q)2

〉
< ℏ

2 ó
〈
(∆p)2

〉
< ℏ

2 .
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De manera semejante a los estados coherentes, los cuales son estados

de vaćıo desplazados (a través del operador D̂(α) = eαâ
†−α∗â), como lo

muestra la Ec. (25), los estados comprimidos también son generados a
partir de aplicar un operador a otros estados, solo que en este caso no
se aplica al estado fundamental, |0⟩, directamente, sino que, en general,
a un estado coherente, |α⟩. Dicho operador, conocido como operador de
compresión tiene una forma similar a D̂(α), pues es un tipo de “gene-
ralización a dos fotones”de este [8]. La razón de esta analoǵıa es que,
mientras D̂(α) es lineal en los operadores de creación y aniquilación, el
exponente del operador de compresión depende cuadráticamente de ellos
(â†2 y â2), lo que implica procesos de creación y aniquilación de pares.
A saber:

Ŝ(ξ) = e
1
2 (ξ

∗â2−ξâ†2). (33)

En donde ξ = reiθ determina el grado de compresión que sufrirá el
estado al que se aplique a través de la magnitud r ∈ [0,∞) y en dirección
de θ ∈ [0, 2π], es decir, no es forzoso que la compresión se dé a lo largo
de q o de p, sino que puede darse en cualquier dirección del espacio
fase, la cual es determinada por este último parámetro y resulta ser una
combinación lineal de las cuadraturas originales.

A diferencia de D̂(α), que actúa creando o destruyendo fotones de
manera individual, Ŝ(ξ) lo hace en pares de fotones correlacionados [8],
lo cual puede observarse en el argumento de la función exponencial, que
a diferencia del operador de desplazamiento, contiene â2 y â†2.

Para poder analizar cómo cambian las cuadraturas y propiedades
de los fotones en este tipo de estados, es necesario observar qué sucede
cuando Ŝ(ξ) (y también Ŝ†(ξ) = Ŝ−1(ξ) = Ŝ(−ξ)) se aplica sobre los
operadores de creación y aniquilación [8]:

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r,

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r − âe−iθ sinh r.
(34)

El operador de compresión puede aplicarse a un estado general |ψ⟩
el cual se transforma en un nuevo estado |ψs⟩ = Ŝ(ξ)|ψ⟩ que mantiene
propiedades de |ψ⟩ pero con diferencias en las cuadraturas. Sin embar-
go, también puede aplicarse directamente sobre el estado fundamental,
generando una redistribución del ruido cuántico, de manera que las fluc-
tuaciones difieran en las cuadraturas, por ejemplo ∆q < 1

2 y ∆p > 1
2 .
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De esta manera, se puede obtener un estado comprimido más general
al aplicar D̂(α) sobre las Ecs. (34) y el estado de vaćıo, resultando en
[8]:

|α, ξ⟩ = D̂(α)Ŝ(ξ)|0⟩. (35)

Aśı, si ξ = 0, se obtiene un estado coherente.
De manera semejante a la Ec. (28), el operador de compresión tam-

bién puede expresarse en términos de estados de Fock [8], sin embargo,
esta expresión únicamente involucra términos pares debido a que Ŝ(ξ)
los introduce (o aniquila) en pares. Aśı, el estado de vaćıo comprimido
puede escribirse como [8]:

|ξ⟩ = 1√
cosh r

∞∑
m=0

(−1)m(eiθ tanh r)m
√

(2m)!

2mm!
|2m⟩. (36)

Una forma simple de analizar este tipo de estados puede darse al
notar que el operador Ŝ(ξ) reescala la función de onda de acuerdo con
[10]:

ψξ(q) = eξ/2ψ0(e
ξq). (37)

Por supuesto, este tipo de estados también tienen asociada una fun-
ción de Wigner. A saber, esta función es:

W (β) =
2

π
exp

(
−1

2
X2

1e
−2r − 1

2
X2

2e
2r

)
. (38)

Donde:

X1 = q cos θ + p sin θ, X2 = −q sin θ + p cos θ.

Un ejemplo de este tipo de estados puede visualizarse en las Fig. 7.
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Figura 7: Función de Wigner para un estado comprimido con r = 0,7 y
θ = π. Puede notarse que es completamente positiva y, aunque podŕıa
estar fuera del origen, este ejemplo muestra que es un estado de vaćıo
comprimido.

4.4. Estados de gato de Schrödinger

Este tipo de estados representan una superposición coherente de dos
estados macroscópicamente distinguibles [8]. Fueron propuestos origi-
nalmente a partir del experimento mental de Erwin Schrödinger para
ilustrar algunas de las peculiaridades de la mecánica cuántica, espećıfi-
camente la superposición y el enredamiento.

Los estados de gato se expresan como una superposición de dos esta-
dos coherentes |α⟩ y |−α⟩ [6]. Estos también son conocidos como estados
coherentes pares o impares y se diferencian en que para los primeros, la
interferencia es constructiva, mientras que para los impares resulta ser
destructiva, es decir, cumplen con [6]:

|Ψpar⟩ = |α⟩+ | − α⟩ =⇒ Ψ(q) = ψα(q) + ψ−α(q),

|Ψimpar⟩ = |α⟩ − | − α⟩ =⇒ Ψ(q) = ψα(q)− ψ−α(q).
(39)

No obstante, a partir de ahora, únicamente se considerará el estado
par, y se denotará simplemente como |Ψ⟩. Algunas de las propiedades de
este estado son la reducción de fluctuaciones cuadráticas por debajo del
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nivel del vaćıo y oscilaciones no clásicas en la distribución del número
de fotones [2].

Existe una diferencia entre los estados de gato de Schrödinger y una
mezcla entre estados, como las formadas por |α⟩ y | − α⟩, debido al
fenómeno de superposición cuántica, presente en los estados de gato de
Schrödinger, y es que, al ser una combinación coherente, dan paso a
fenómenos de interferencia cuántica, de la cual carece una mezcla clási-
ca entre los estados mencionados. A diferencia de los sistemas clásicos,
en los que las interferencias ocurren entre magnitudes f́ısicas (como las
ondas electromagnéticas), en los sistemas cuánticos, esta interferencia su-
cede entre amplitudes de probabilidad [7]. Esta puede observarse en su
función de Wigner, en forma de productos cruzados entre sus respectivas
funciones de onda, es decir, los productos ψα(q)ψ

∗
−α(q) y ψ−α(q)ψ

∗
α(q)

(ver Apéndice E.4).
La función de Wigner asociada a este tipo de estados es:

WΨ(q, p) =Wα(q, p) +W−α(q, p) +Wint(q, p). (40)

En donde:

Wα(q, p) =
1

πℏ
e−

1
ℏ ((q−q0)

2+(p−p0)2),

W−α(q, p) =
1

πℏ
e−

1
ℏ ((q+q0)

2+(p+p0)
2),

Wint(q, p) =
2

πℏ
e−

1
ℏ (q

2+p2) cos

(
2√
ℏ
(pλ− µq)

)
.

Donde λ = q0√
ℏ y µ = p0√

ℏ . Y gráficamente puede verse en la Fig. 8.
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Figura 8: En la función de Wigner para un estado de gato de Schrödinger
ya se notan algunas regiones negativas, lo cual se debe a las interferencias
existentes entre |α⟩ y | − α⟩.

5. Función caracteŕıstica y ordenamiento de
operadores

Antes de abordar la definición espećıfica propuesta por Moyal, es
fundamental establecer el contexto matemático que hace necesaria es-
ta discusión. En la mecánica cuántica del espacio fase, la naturaleza no
conmutativa de los operadores de posición y momento impide establecer
una correspondencia única entre las funciones clásicas y los operadores
cuánticos. Como consecuencia, surgen distintas reglas de corresponden-
cia u “ordenamientos” de operadores. En esta sección se explorará cómo
cada uno de estos ordenamientos está ı́ntimamente ligado a una función
caracteŕıstica espećıfica y, por ende, da lugar a diferentes distribuciones
de cuasi-probabilidad.

5.1. Función caracteŕıstica de Moyal

En contraste con la mecánica estad́ıstica clásica, en la que las distri-
buciones evolucionan siguiendo leyes deterministas, la mecánica cuántica
involucra la necesidad de una visión más general, dentro de la cual el for-
malismo clásico queda contenido como un caso particular o ĺımite. José
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Enrique Moyal (1910–1998) precisa que esta necesidad apunta hacia los
procesos estad́ısticos dinámicos (estocásticos) [13]. Esto se debe a que, en
la mecánica cuántica, la evolución temporal de las distribuciones de pro-
babilidad no tiene por qué ser determinista debido a la imposibilidad de
definir distribuciones conjuntas de variables dinámicas no conmutativas,
tales como la posición y el momento.

Moyal argumenta que, aunque la medición simultánea de variables
no conmutativas (como q y p) es imposible, es conceptualmente válido
asociarles distribuciones estad́ısticas en el espacio fase. De esta manera,
propone que la mecánica cuántica podŕıa interpretarse directamente co-
mo una teoŕıa estad́ıstica, en la que las distribuciones clásicas pertenecen
a un caso particular de esta [13].

Esta caracteŕıstica sale a relucir en los estados coherentes, cuyas dis-
tribuciones asociadas en el espacio fase son Gaussianas, bien definidas,
y permiten calcular valores esperados de operadores cuánticos de mane-
ra directa. Estos estados son un buen ejemplo de cómo las herramientas
estad́ısticas pueden ser útiles incluso en sistemas con restricciones cuánti-
cas.

Moyal también propuso que, además de la Ec. (1), en donde la función
de Wigner se obtiene con una transformada de Fourier de los elementos
de la matriz de densidad ρ(q, q′), o de la Ec. (15), que es análoga a
esta pero en términos de p en lugar de q, la función de Wigner puede
obtenerse a partir de su función caracteŕıstica, la cual describe el estado
ρ̂ mediante una función de dos variables, [3, 13].

Si se considera esta función, C(σ, τ), como la transformada de Fourier
de W (q, p), es decir:

C(σ, τ) = Tr[ρ̂Ĉ(σ, τ)] =

∫
dq

∫
e

i
ℏ (σq+τp)W (q, p)dp, (41)

entonces se puede obtener la función de Wigner como [3]:

W (q, p) =

(
1

2πℏ

)2 ∫
dσ

∫
e−

i
ℏ (σq+τp)C(σ, τ)dτ. (42)

A pesar de que la función caracteŕıstica de Moyal, Ec. (41), es una
herramienta poderosa, esta formulación contiene términos dependientes
de las variables rećıprocas de posición y momento (σ, τ) (asociadas al
espacio de Fourier), lo cual podŕıa hacer que su interpretación f́ısica di-
recta se complique, ya que, precisamente, la idea es lograr visualizar el
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estado de manera similar a como se visualiza una densidad de probabili-
dad clásica, labor que es más directa a través de las variables (q, p), por
lo que pasar a este espacio se facilita si se hace uso de la transformada
de Fourier, Ec. (42).

En el contexto de la óptica cuántica, resulta bastante útil introducir
la función caracteŕıstica en términos de los operadores de creación, â†,
y aniquilación, â. No obstante, son sensibles al orden con el que sean
aplicados a un sistema, de manera que es menester hacer mención de los
distintos resultados que se obtienen al usar un orden u otro.

5.2. Ordenamiento de operadores â y â†

Como se mencionó en la sección 4.2, los operadores â y â† no con-
mutan entre śı, consecuentemente, el orden en que se aplican tiene un
papel fundamental en la mecánica cuántica.

Esta situación conduce a tener que reconocer varios tipos de ordena-
mientos de operadores, conocidos como el orden normal, el anti-normal
y el orden de Weyl (el cual es simétrico). Esto debido a que, como es
sabido, en la mecánica cuántica, el orden de los factores śı altera el pro-
ducto. Esto significa que es posible asociar una función clásica A(q, p)
con un operador Â(q̂, p̂) de diferentes maneras [2, 3, 8, 10, 12]:

Orden normal (Ordenamiento de Glauber - Sudarshan,
o simplemente P ): Los operadores de creación â† se colocan a
la izquierda, mientras que los de aniquilación, â a la derecha, sin
olvidar el operador de número (â†â = n̂). Este ordenamiento se
atribuye a Glauber-Sudarshan.

Orden anti-normal (Ordenamiento de Husimi, o simple-
mente Q): Atribuido a Husimi, en el cual, inversamente al or-
denamiento de Glauber-Sudarshan, los operadores de aniquilación
se colocaŕıan a la izquierda, mientras que los de creación a la
derecha, recordando que, para una función de onda ψ, se tiene:
ââ†ψ = (n+ 1)ψ.

Orden simétrico (ordenamiento de Weyl): Promedia de ma-
nera simétrica los operadores q̂ y p̂, por lo que se tratará con mayor
detalle ya que resulta ser particularmente importante para la fun-
ción de Wigner debido a que evita singularidades que śı podŕıan
aparecer en las anteriores.

33



Estos ordenamientos dan lugar a diferentes cuasidistribuciones (P ,
Q y W , respectivamente), por lo que debe tenerse especial cuidado al
definir operadores a partir de funciones clásicas [12].

En la práctica, es útil obtener la distribución de probabilidad (o cuasi-
probabilidad, como P , Q o W ) mediante una función caracteŕıstica, de-
bido a que una función caracteŕıstica contiene toda la información nece-
saria sobre el estado cuántico del sistema para reconstruir la función de
densidad de probabilidad mediante una transformada de Fourier inver-
sa. Esto es posible ya que, en general, una función de densidad ρ(x) está
completamente definida si se conocen todos los momentos de la variable
aleatoria x (valor esperado, varianza, asimetŕıa, curtosis, etc.) [8].

5.3. Función caracteŕıstica de distintos ordenamien-
tos

Dado que los operadores de creación y aniquilación no conmutan,
existen distintas reglas de asociación que dan lugar a diferentes des-
cripciones estad́ısticas del mismo estado cuántico. A continuación, se
analizan las funciones caracteŕısticas asociadas a los tres ordenamientos
principales y sus respectivas cuasidistribuciones.

5.3.1. Ordenamiento normal (Glauber-Sudarshan)

Para el caso del ordenamiento normal, la descripción del operador de
densidad ρ̂ se realiza en términos de una cuasidistribución de probabili-
dad expresada como una integral sobre todos los estados coherentes ca-
racterizados por el parámetro complejo α. Estos estados coherentes |α⟩,
que cumplen la Ec. (27), permiten construir dicha representación, cono-
cida como representación P (α) o representación de Glauber-Sudarshan,
denominada aśı en honor a los f́ısicos Roy J. Glauber (1925–2018) y
George Sudarshan (1931–2018):

ρ̂ =

∫
P (α)|α⟩⟨α|d2α. (43)

Aqúı, d2α representa las variables de integración correspondientes a
las partes real e imaginaria de α.

Es posible notar que en la Ec. (43), P (α) toma un comportamiento
análogo a una función de probabilidad clásica, ya que permite ponderar
cada estado en la expansión del operador ρ̂.
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Esta cuasidistribución es útil para describir sistemas cuánticos que
presentan caracteŕısticas cuasi-clásicas (es decir, que admiten una des-
cripción probabiĺıstica positiva), como los estados coherentes, en los que
toma el valor de una delta de Dirac (reflejando una incertidumbre mı́ni-
ma) o estados de luz térmica, como la de una lámpara incandescente,
en los que adquiere la forma de una Gaussiana. Para estos estados, esta
representación toma valores positivos [2, 3, 8].

En general, permite identificar cuándo un sistema se comporta de
forma más clásica (P (α) ≥ 0), en tal caso, los campos cuantizados de este
tipo pueden simularse con una descripción clásica tratando la amplitud
compleja de dichos campos como una variable aleatoria estocástica con
probabilidad P [9].

Por el contrario, cuando su comportamiento es el de un sistema pu-
ramente cuántico (donde P (α) < 0 o es singular), como los estados
comprimidos (en los que la incertidumbre de alguna de las cuadraturas,
posición o momento, se reduce por debajo de los valores del estado de
vaćıo mientras que la otra aumenta), o los estados de número, en los que
toma una forma que requiere derivadas de una delta de Dirac (esta deri-
vada de δ es también llamada distribución templada o, por su término en
inglés, tempered distribution), la cual es más singular que la propia δ [8],
por lo que su interpretación f́ısica podŕıa volverse complicada. Debido a
esto, su utilidad para representar este tipo de estados se ve reducida.

A diferencia de la función de Wigner, que se asocia con el ordenamien-
to simétrico (o de Weyl), P (α) está ligada al ordenamiento normal, de
manera que, en términos de una variable η ∈ C, la función caracteŕıstica
asociada es:

χN (η) = Tr[ρ̂eηâ
†
e−η

∗â]. (44)

Como se mencionó anteriormente, si se aplica una transformada de
Fourier a la función caracteŕıstica, puede recuperarse la distribución.
Para este ordenamiento:

χN (η) =

∫
P (α)⟨α|eηâ

†
e−η

∗â|α⟩d2α,

=

∫
P (α)eηα

∗−η∗αd2α.

=⇒ P (α) =
1

π2

∫
eη

∗α−ηα∗
χN (η)d2η.

(45)
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5.3.2. Ordenamiento antinormal (Husimi)

Análogamente a lo anterior, si se hace uso del ordenamiento anti-
normal, es posible obtener la representación Q (de Husimi), que es siem-
pre positiva [8], lo cual puede verse en su definición: Q(α) = 1

π ⟨α|ρ̂|α⟩.
No obstante, a pesar de ser siempre positiva y no tener singularidades,
no puede tomarse como una distribución de probabilidad clásica, ya que
los estados |α⟩ siguen la incertidumbre de Heisenberg, por lo que tiene
una “anchura mı́nima”, lo cual no permite capturar toda la información
cuántica del estado si es que este presenta un comportamiento pura-
mente cuántico, como el “antibunching” o el “squeezing”, o simplemente
presenta efectos no clásicos.

La representación Q también es útil para representar estados caóticos
y coherentes, aunque es menos precisa que P , ya que como se comentó,
para estos últimos, P adquiere forma de una delta de Dirac, mientras
que Q lo hace como una Gaussiana suavizada [9], reflejando cierta impre-
cisión en comparación con la primera, sin embargo, resulta de utilidad
para estados en los que P no existe en un sentido práctico, como los
estados comprimidos, en los que Q adquiere la forma de una Gaussiana
eĺıptica [8].

Bajo este ordenamiento, la función caracteŕıstica adquiere la forma:

χA(η) = Tr[ρ̂e−η
∗âeηâ

†
]. (46)

Aśı, si se aplica un procedimiento similar al utilizado en la Ec. (45)
se obtendrá:

Q(α) =
1

π2

∫
eη

∗α−ηα∗
χA(η)d

2η. (47)

5.3.3. Ordenamiento simétrico (Weyl)

El orden de Weyl, utilizado en la definición de la función de Wigner,
promedia de manera simétrica las permutaciones de q̂ y p̂. Por ejemplo,
el producto clásico q · p puede ser convertido en un operador cuántico
simétrico, expresado como Â(q̂, p̂) = 1

2 (q̂p̂+ p̂q̂) [8]. En general, si A(q̂, p̂)
es una función bajo el orden de Weyl, entonces:

Â(q̂, p̂) =

∫
A(q̂, p̂)W (q, p)dqdp. (48)

36



Al ser simétrico con respecto a los operadores â y â† y no tener
preferencia por uno u otro, el orden de Weyl puede ser visto como un
promedio entre el ordenamiento normal y antinormal.

Para este caso, la función caracteŕıstica correspondiente, se define
como:

χ(η) = Tr[ρ̂D̂(η)] = Tr[ρ̂eηâ
†−η∗â]. (49)

Las funciones caracteŕısticas (45) y (47) pueden relacionarse haciendo
uso de la fórmula de Baker-Campbell-Hausdorff3, obteniendo:

χ(η) = χNe
− 1

2 |η|
2

. (50)

A pesar de que en la Ec. (50) aparece χN (η), relacionada con la
representación P , es asociada con el ordenamiento simétrico de los ope-
radores y es un elemento clave para la definición de la función de Wigner,
de manera que esta puede obtenerse al aplicar la transformada [3, 9], a
saber:

W (α) =
1

π2

∫
eη

∗α−ηα∗
χ(η)d2η,

=
1

π2

∫
eη

∗α−ηα∗
χN (η)e−

1
2 |η|

2

d2η.

(51)

Cabe resaltar que tanto C(q, p) (Ec. (41)), como χ(η) (Ec. (49)),
describen a la matriz de densidad ρ̂, con la diferencia de que lo hacen en
distintas bases. Son como “los dos lados de una misma moneda”.

Mientras que C(σ, τ) permite representar a W (q, p) en términos de
desplazamientos en el espacio fase a través de las variables conjugadas de
(q, p), la función χ(η) lo hace en términos de un promedio simétrico de
estas variables originales (debido a que los operadores â y â† se relacionan
con ellas), es decir, se deriva del ordenamiento simétrico (o de Weyl), con
lo cual se logran evitar singularidades. No obstante, existe una relación
entre estas dos representaciones, la cual se puede obtener al sustituir los
operadores â y â† (Ec. (16)) en la función caracteŕıstica de Moyal (Ec.
(41)), de manera que se encontrará la relación entre la variable η que
aparece en la Ec. (49). Esto puede verse con mayor detalle en el Apéndice
D.

3Esta fórmula establece que para dos operadores Â y B̂, si el conmutador [Â, B̂]
conmuta con ambos operadores, entonces la exponencial de la suma se factoriza como:

eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂].
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5.4. Dinámica y dependencia temporal

Hasta ahora se ha hablado acerca de la función de Wigner asocia-
da con distintos tipos de estados e incluso distintos ordenamientos de
los operadores â y â†; sin embargo, esto se ha hecho sin considerar la
dinámica de esta función, ya que no se ha introducido algún parámetro
que involucre al tiempo.

Ahora, para tener una perspectiva general de esto, puede considerarse
que, en la Ec. (1), las funciones de onda son dependientes del tiempo.
Bajo este supuesto, y haciendo uso de la ecuación de Schrödinger, es
posible mostrar que la derivada temporal de la función de Wigner es tal
que [4]:

∂W (q, p)

∂t
=
∂WT

∂t
+
∂WU

∂t

= − p

m

∂W (q, p)

∂q
+

∞∑
s=0

(−ℏ2)s
1

(2s+ 1)!

(
1

2

)2s
∂2s+1U(q)

∂q2s+1

(
∂

∂p

)2s+1

W (q, p).

(52)

Los detalles algebraicos de este resultado pueden revisarse en el Apéndi-
ce F.

Es notable que, en esta última ecuación, el primer término (corres-
pondiente a ∂WT

∂t ) no es dependiente de ℏ, mientras que el segundo (co-

rrespondiente a ∂WU

∂t ) śı. Esto puede interpretarse como que el primero
representa la contribución de la enerǵıa cinética, a través del movimien-
to de la función de Wigner en el espacio de posiciones, mientras que el
segundo se asocia con las correcciones cuánticas.

5.4.1. Ejemplo: Oscilador Armónico

Como es sabido, el oscilador armónico es ampliamente utilizado para
modelar sistemas tanto clásicos como cuánticos. En el caso cuántico, se
describe por un potencial cuadrático de la forma U(q) = 1

2mω
2q2. Esta

caracteŕıstica matemática implica que, debido a que el potencial es un
polinomio de segundo orden, todas las derivadas de orden superior a dos
que aparecen en la suma de la Ec. (52) son nulas.

En consecuencia, todos los términos de corrección cuántica (los que
dependen de potencias de ℏ) desaparecen. Esto significa que, para el osci-
lador armónico, la función de Wigner evoluciona siguiendo exactamente
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la ecuación de Liouville clásica, sin dispersión cuántica. F́ısicamente, esto
implica que la distribución de probabilidad en el espacio fase simplemen-
te “fluye” siguiendo las trayectorias clásicas de las part́ıculas.

La función de Wigner inicial W (q, p, 0) puede construirse a partir de
los estados propios |n⟩, como se definió en la Ec. (22):

W (α) =
2

π
(−1)nLn(4|α|2)e−2|α|2 .

En donde α = (q+ ip)/
√
2. Dado que la evolución es clásica, la forma

de la distribución se preserva y simplemente experimenta una rotación
en el espacio fase con frecuencia angular ω. Las trayectorias clásicas que
dictan esta rotación están dadas por [4]:

q0 = q cos(ωt)− p

mω
sin(ωt),

p0 = p cos(ωt) +mωq sin(ωt).

Aśı, para un oscilador de masa unitaria y frcuencia ω = 1, la función
de Wigner asociada será [4]:

W (q, p, t) =W (q cos(t)− p sin(t), p cos(t) + q sin(t), 0) (53)

Este resultado muestra que, para potenciales cuadráticos, la “nube”
de probabilidad orbita el origen del espacio fase igual que lo haŕıa un
sistema clásico.
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6. Conexión entre la mecánica cuántica y
clásica

Como se mencionó en la sección 5.1, es válido asociar distribuciones
estad́ısticas a observables que, en general, son no conmutativas entre śı,
de manera que, por ejemplo, una función G(r, s), en la que las variables
r y s no conmutan, puede asociarse a un operador simétricamente orde-
nado, en el que su valor esperado será tal que ⟨G(r, s)⟩ = ⟨ψ|G(r̂, ŝ)|ψ⟩
[13].

En el caso espećıfico de una función clásica A(q, p), definida en el
espacio fase, también es posible asociar un operador cuántico Â(q, p), a
través de la transformada de Weyl [4], la cual también utiliza una repre-
sentación simétricamente ordenada, como puede notarse en su definición:

A(q, p) =

∫ 〈
q +

z

2

∣∣∣Â∣∣∣ q − z

2

〉
e−ipz/ℏdz. (54)

Esta transformada mapea funciones clásicas en el espacio fase a ope-
radores cuánticos y viceversa, lo cual puede ser útil para ver una conexión
entre la mecánica cuántica y la mecánica clásica. Además, cuenta con
una propiedad importante, y es que, si se tienen dos funciones clásicas
A(q, p) y B(q, p) asociadas a los operadores Â y B̂, respectivamente,
entonces [3]:

Tr[ÂB̂] =
1

2πℏ

∫
dq

∫
A(q, p)B(q, p)dp. (55)

Se observa que se recupera la propiedad de la Ec. (10) a través de
la Ec. (55) si se toma cierta definición para las funciones, por ejemplo
Â = ρ̂ y B̂ = Î [3].

Por otra parte, si A(q, p) continúa siendo una función clásica definida
en el espacio fase y B̂ = ρ̂, entonces, para un sistema que sea descrito por
la distribución de probabilidadW (q, p) (asociada a la matriz de densidad
ρ̂), el valor esperado de la función A es tal que [3]:

⟨A⟩ = Tr[ρ̂Â] =

∫
dq

∫
W (q, p)A(q, p)dp. (56)

La forma algebraica de este valor esperado puede obtenerse natural-
mente, sin requerir el uso de la función caracteŕıstica de Moyal [1], a
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partir de colocar de manera estratégica tres veces el operador Î, (usando
la identidad ⟨q|p⟩ = 1√

2πℏe
iqp/ℏ) dentro de Tr[ρ̂Â] =

∫
⟨q1|ρ̂Â|q1⟩dq1 y

realizar un cambio de variable definido por las diferencias de posiciones
y momentos iniciales y finales [1].

En la Ec. (56), es posible observar una analoǵıa con el promedio de
una cantidad f́ısica representada por A(q, p) y distribución de probabili-
dad W (q, p).

La función de Wigner (Ec. (1)) se encuentra definida en eigenestados
de posición; no obstante, en la formulación de la mecánica cuántica del
espacio fase existe cierta simetŕıa en W (q, p) (y también en A(q, p)),
de modo que es posible expresar cualquiera de las dos en términos de
eigenestados, ya sean de posición o momento.

Es prudente mencionar que no basta con que W (q, p) cumpla con
las propiedades descritas anteriormente (en la Sección 3) sino que dicha
función también debe corresponder a un operador de densidad válido
en la mecánica cuántica, es decir, que ρ̂ = ρ̂†, Tr[ρ̂] = 1 y que sus
eigenvalores λi ∈ [0, 1].

De la revisión previa, es notable que el uso de la traza de los ope-
radores es bastante útil, de modo que, como se mencionó en la Sección
2.1, a través de ella, y el operador Ŵ (q, p) (Ec. (5)), puede obtenerse la
función de Wigner asociada a un operador que no necesariamente sea ρ̂
[1]. Por ejemplo, para Â(q, p):

WÂ(q, p) = Tr[ÂŴ (q, p)]. (57)

En cambio, si se trata de ρ̂:

W (q, p) = Tr

[
ρ̂

2πℏ
Ŵ (q, p)

]
. (58)

Para las últimas dos ecuaciones se observa que si 2πℏÂ = ρ̂, estas se
igualan.

6.1. El Ĺımite Cuántico-Clásico

Una condición que, más que deseable, es menester para observar una
conexión entre las teoŕıas clásica y cuántica de la mecánica es que en
el ĺımite cuando ℏ → 0, la función de Wigner W (q, p) se asemeje a una
verdadera distribución de probabilidades en el espacio fase, ya que esto
reflejaŕıa el comportamiento clásico del sistema.
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Si se revisa la Ec. (52), el segundo sumando tiene una dependencia
directa de ℏ, mientras que el primero no, aśı, en el ĺımite en que ℏ → 0,
los términos del segundo sumando se anulan y se recupera la ecuación de
Liouville clásica, la cual describe la evolución temporal de la densidad
de probabilidad de un sistema clásico (Ec. (12)).

∂W (q, p)

∂t
=
∂WT

∂t
+
∂WU

∂t

∂W (q, p)

∂t
=
∂WT

∂t
+
∂WU

∂t

= − p

m

∂W (q, p)

∂q
+

∞∑
s=0

(−ℏ2)s
1

(2s+ 1)!

(
1

2

)2s
∂2s+1U(q)

∂q2s+1

(
∂

∂p

)2s+1

W (q, p).

=⇒ ĺım
ℏ→0

(
∂W (q, p)

∂t

)
= − p

m

∂W (q, p)

∂q
. (59)

7. Conclusiones

En este trabajo se ha explorado la formulación de la mecánica cuánti-
ca en el espacio fase a través de la función de Wigner, evidenciando que
esta herramienta constituye mucho más que una simple curiosidad ma-
temática ya que representa un puente conceptual entre el formalismo
abstracto de operadores y la intuición geométrica de la mecánica clási-
ca. Si bien la función de Wigner logra una descripción conjunta de la
posición y el momento, superando la restricción habitual de elegir una
única representación, su naturaleza de cuasi-probabilidad surge como
consecuencia del principio de incertidumbre de Heisenberg. A diferencia
de las densidades clásicas, la función de Wigner puede adquirir valores
negativos en regiones donde la interferencia cuántica es dominante. Este
comportamiento, aunque podŕıa pensarse como una inconsistencia, en
realidad es un indicativo de la naturaleza no clásica de un estado, como
se observó detalladamente en los estados de Fock y los estados de gato
de Schrödinger.

El análisis de los distintos estados f́ısicos reveló un panorama con-
trastante en el espacio fase. Por un lado, los estados coherentes y los
estados comprimidos exhiben funciones de Wigner positivas y localiza-
das que minimizan la relación de incertidumbre, comportándose como
los análogos más cercanos a las part́ıculas clásicas. Por otro lado, los
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estados de número y las superposiciones macroscópicas revelan estruc-
turas oscilatorias complejas y regiones negativas que imposibilitan una
interpretación probabiĺıstica clásica directa, confirmando que la función
de Wigner puede fungir como un detector de la coherencia y las correla-
ciones cuánticas.

También se estableció la conexión fundamental entre las distribucio-
nes de cuasi-probabilidad y el ordenamiento de operadores. En particu-
lar, la función de Wigner es la representación asociada al ordenamien-
to simétrico (o de Weyl), distinguiéndose de las representaciones P de
Glauber-Sudarshan (orden normal) y Q de Husimi (orden antinormal).
Esta correspondencia enfatiza que la elección de una distribución en el
espacio fase no es arbitraria, sino que dicta las reglas de cálculo pa-
ra los valores esperados de los observables f́ısicos y la aplicación de los
operadores.

Finalmente, el estudio de la dinámica y la evolución temporal re-
afirmó la consistencia del formalismo. Para sistemas con potenciales
cuadráticos, como el oscilador armónico, la evolución de la función de
Wigner sigue exactamente la ecuación de Liouville clásica, preservan-
do la forma de la distribución a lo largo de las trayectorias del espacio
fase. Además, se mostró que en el ĺımite ℏ → 0, las correcciones cuánti-
cas se desvanecen, recuperando la descripción estad́ıstica de la mecánica
clásica. Esto lleva a notar que la función de Wigner es una herramienta
muy poderosa para visualizar fenómenos cuánticos de una manera intui-
tiva, mediante la posibilidad de analizar la transición clásico-cuántica y
comprender la estructura de la información en el espacio fase.
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Apéndices:

A. Relación entre Ŵ (q, p) y Π̂q,p

En la sección 2.1 se ha mencionado que:

Ŵ (q, p) = 4πΠ̂q,p.

Pero, ¿cómo es que surge esta relación? Pues, si se considera que [1]:

W (q, p) = Tr

[
ρ̂

2πℏ
Ŵ (q, p)

]
.

Entonces, para un estado puro ρ̂ = |ψ⟩⟨ψ|, se tendrá:

W (q, p) = Tr

[
|ψ⟩⟨ψ|
2πℏ

Ŵ (q, p)

]
=

1

2πℏ
Tr
[
|ψ⟩⟨ψ|Ŵ (q, p)

]
.

Ahora, usando el hecho de que Tr
[
|ψ⟩⟨ψ|Ĉ

]
= ⟨ψ|Ĉ|ψ⟩, entonces:

W =
1

2πℏ
⟨ψ|Ŵ (q, p)|ψ⟩.

Por otra parte, en términos del operador de paridad desplazado Π̂q,p,
se tiene:

W (q, p) =
2

ℏ
⟨ψ|Π̂q,p|ψ⟩.

Al igualar estas expresiones se llega a:

1

2πℏ
⟨ψ|Ŵ (q, p)|ψ⟩ = 2

ℏ
⟨ψ|Π̂q,p|ψ⟩,

⟨ψ|Ŵ (q, p)|ψ⟩ = 4π⟨ψ|Π̂q,p|ψ⟩.
=⇒ Ŵ (q, p) = 4πΠ̂q,p.

(60)

B. Operadores de Bopp

Es posible utilizar representaciones algebraicas del operador de Wig-
ner, mencionado en la sección 5, que podŕıan simplificar los cálculos.
Una de las herramientas más útiles para ello son los Operadores de Bopp
—nombrados aśı en honor al f́ısico alemán Fritz Bopp (1909–1987)— los
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cuales permiten expresar la función de Wigner asociada a una función
clásica A(q, p) sin necesidad de recurrir a una representación integral.

Estos operadores sustituyen las variables cuánticas q̂ y p̂ de la si-
guiente manera:

q̂ →
(
q − 1

2

ℏ
i

∂

∂p

)
, p̂→

(
p+

1

2

ℏ
i

∂

∂q

)
. (61)

Los cuales conducen a una expresión resultante para Â(q̂, p̂) tal que:

WÂ(q, p) = Â

(
q − 1

2

ℏ
i

∂

∂p
, p+

1

2

ℏ
i

∂

∂q

)
1. (62)

En donde los operadores de Bopp actúan, primero, entre śı, y poste-
riormente sobre el número 1 [1].

C. Convenciones para W (q, p)

En la literatura existen diversas convenciones para la definición de
la función de Wigner, las cuales son utilizadas a conveniencia según el
contexto en el que se apliquen. A continuación se mencionan algunas de
las que son mencionadas por algunos de los autores de las referencias
bibliográficas del presente texto.

La definición principal (la que se ha priorizado en este trabajo), es
decir, la Ec. (1):

W (q, p) =

∫ 〈
q +

1

2
y

∣∣∣∣ ρ̂

2πℏ

∣∣∣∣ q − 1

2
y

〉
e−ipy/ℏdy,

es, también, utilizada por autores como Ben Benjamin [1] y Wolf-
gang Schleich [2].

Algunas de las convenciones utilizadas vaŕıan únicamente en el sen-
tido de la normalización, por ejemplo:

W. Case [4] utiliza la convención:

W (q, p) =
1

ℏ

∫
ψ

(
x+

1

2
y

)
ψ∗
(
x− 1

2
y

)
e−ipy/ℏdy. (63)
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Otros autores difieren en el signo que se utiliza en el argumento de la
función exponencial en la definición de la transformada de Fourier que
se ha utilizado:

C. Gerry y P. Knight [8] utilizan:

W (q, p) =

∫ 〈
q +

1

2
x

∣∣∣∣ ρ̂

2πℏ

∣∣∣∣ q − 1

2
x

〉
eipx/ℏdx. (64)

O también pueden variar en los puntos en que se evalúa la función,
de manera que:

Los autores de la referencia [3] utilizan:

W (q, p) =
1

πℏ

∫
⟨q − y|ρ̂|q + y⟩ei2py/ℏdy. (65)

Luis de la Peña [7] usa:

W (x, p) =
1

πℏ

∫
⟨x+ z|ρ̂|x− z⟩e−i2pz/ℏdz. (66)

D. Relación entre las funciones caracteŕısti-
cas C(σ, τ) y χ(η).

Una función caracteŕıstica codifica la descripción completa de un
estado cuántico, tal como lo hace la matriz de densidad ρ̂. Por lo tanto,
son representaciones equivalentes que preservan la misma información
f́ısica. En este caso particular, se tiene la función caracteŕıstica de Moyal
(Ec. (41)):

C(σ, τ) = Tr[ρ̂Ĉ(σ, τ)] =

∫
dq

∫
e

i
ℏ (σq+τp)W (q, p)dp.

En donde se tiene Ĉ(σ, τ) = e
i
ℏ (σq̂+τp̂), y la función caracteŕıstica

asociada al ordenamiento simétrico de los operadores de creación y ani-
quilación (Ec. 49):

χ(η) = Tr[ρ̂eηâ
†−η∗â].
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La primera representa al estado en el espacio de las variables con-
jugadas de la posición y el momento (σ, τ), mientras que la segunda lo
hace a través de una relación con los operadores â y â†. No obstante, el
argumento de las funciones exponenciales de cada una de estas funciones
caracteŕısticas, es decir:

i

ℏ
(σq̂ + τ p̂) y ηâ† − η∗â,

sugiere una conexión entre las variables (σ, τ) y η. De manera que, si
se definen η y η∗ como:

η =
1√
2ℏ

(−τ + iσ) , η∗ =
1√
2ℏ

(−τ − iσ) ,

se puede llegar a que i
ℏ (σq̂ + τ p̂) = ηâ† − η∗â, y por lo tanto:

C(σ, τ) = χ(η).

E. Cálculo de las funciones de Wigner para
distintos estados

E.1. Estados de Fock

Aqúı se muestran con mayor detalle dos formas para obtener la fun-
ción de Wigner para los estados de Fock (Ec. 22). Una corresponde al
uso de la función de onda para estos estados (Ec. 21), mientras que la
otra se realiza usando el operador de desplazamiento.

E.1.1. Usando la función de onda

Considerando la función de onda para estos estados (Ec. 21):

ψn(x) =
1√
2nn!

(
1

πℏ

)1/4

Hn

(
1√
ℏ
x

)
e−

x2

2ℏ .

En esta expresión, Hn(ξ) denota los polinomios de Hermite de
n-ésimo orden4.

4Los polinomios de Hermite se definen como: Hn(x) = (−1)nex
2 dn

dxn e−x2
.
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En la definición de la función de Wigner, 1:

W (q, p) =

∫ 〈
q +

1

2
y

∣∣∣∣ ρ̂

2πℏ

∣∣∣∣ q − 1

2
y

〉
e−ipy/ℏdy

En donde ρ̂ = |n⟩⟨n|, entonces se tendrá:

W (q, p) =
1

2πℏ

∫ 〈
q +

1

2
y

∣∣∣∣n〉〈n ∣∣∣∣q − 1

2
y

〉
e−ipy/ℏdy.

El bracket será:

〈
q +

1

2
y

∣∣∣∣n〉〈n ∣∣∣∣q − 1

2
y

〉
= ψn

(
q +

y

2

)
ψ∗
n

(
q − y

2

)

=

(
1√
2nn!

(
1

πℏ

)1/4
)2

Hn

(
1√
ℏ

(
q +

y

2

))
×

×Hn

(
1√
ℏ

(
q − y

2

))
e−

1
2ℏ (q+

y
2 )

2

e−
1
2ℏ (q−

y
2 )

2

=
1

2nn!

(
1√
πℏ

)
Hn

(
1√
ℏ

(
q +

y

2

))
Hn

(
1√
ℏ

(
q − y

2

))
e
− 1

ℏ

(
q2+ y2

4

)
.

=⇒Wn(q, p) =
1

2πℏ

∫
1

2nn!

(
1√
πℏ

)
Hn

(
1√
ℏ

(
q +

y

2

))
×

×Hn

(
1√
ℏ

(
q − y

2

))
e
− 1

ℏ

(
q2+ y2

4

)
e−

ipy
ℏ dy. (67)

Con este resultado para Wn(q, p) y tomando en cuenta que para
n = 0, los polinomios de Hermite son H0(x) = 1, entonces:

W0(q, p) =
1

2πℏ

∫
1√
πℏ
e
− 1

ℏ

(
q2+ y2

4

)
e−

ipy
ℏ dy

=
1

2πℏ

(
1√
πℏ

)(
2
√
πℏe−

1
ℏ (q

2+p2)
)

=
1

πℏ
e−

1
ℏ (q

2+p2).

(68)
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Ahora, para n = 1 se tiene que H1(x) = 2x, entonces la Ec. 67 dará:

W1(q, p) =
1

2πℏ

∫
1

2

(
1√
πℏ

)(
2√
ℏ

(
q +

y

2

))
×
(

2√
ℏ

(
q − y

2

))
e
− 1

ℏ

(
q2+ y2

4

)
e−

ipy
ℏ dy

=
1

(πℏ)3/2

∫ (
q2 − y2

4

)
e
− 1

ℏ

(
q2+ y2

4

)
e−

ipy
ℏ dy

=
1

(πℏ)3/2

(∫
q2e

− 1
ℏ

(
q2+ y2

4

)
e−

ipy
ℏ dy −

∫
y2

4
e
− 1

ℏ

(
q2+ y2

4

)
e−

ipy
ℏ dy

)

=
1

(πℏ)3/2
(
2
√
πℏq2e−

1
ℏ (q

2+p2) +
√
πℏ(2p2 + ℏ)e−

1
ℏ (q

2+p2)
)
.

=⇒W1(q, p) =
−1

πℏ
(
ℏ− 2(q2 + p2)

)
e−

1
ℏ (q

2+p2). (69)

De manera semejante, para n = 2, dado que H2(x) = 4x2− 2, enton-
ces:

W2(q, p) =
1

2πℏ

∫
1

8

(
1√
πℏ

)(
4√
ℏ

(
q +

y

2

)2
− 2

)
×

×
(

4√
ℏ

(
q − y

2

)2
− 2

)
e
− 1

ℏ

(
q2+ y2

4

)
e−

ipy
ℏ dy

=
1

16(πℏ)3/2

∫ (
(y − 2q)2

ℏ
− 2

)(
(y + 2q)2

ℏ
− 2

)
e
− 1

ℏ

(
q2+ y2

4

)
e−

ipy
ℏ dy
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=
1

16(πℏ)3/2

∫ (
(y2 − 4q2)2

ℏ2
− 2(y − 2q)2

ℏ
− 2(y + 2q)2

ℏ
+ 4

)
× e

− 1
ℏ

(
q2+ y2

4

)
e−

ipy
ℏ dy

=
1

16(πℏ)3/2
(I1 + I2 + I3 + I4) .

Las cuatro integrales que deben resolverse dan como resultado:

I1 = 8e−
p2+q2

ℏ

√
π

ℏ

(
4(p2 + q2)2 − 4(3p2 + q2)ℏ+ 3ℏ2

ℏ

)
,

I2 = −8

√
π

ℏ
e−

p2+q2

ℏ
(
−2(p− iq)2 + ℏ

)
,

I3 = −8

√
π

ℏ
e−

p2+q2

ℏ
(
−2(p+ iq)2 + ℏ

)
,

I4 = 8e−
p2+q2

ℏ
√
πℏ.

Por lo tanto, al sustituirlas, se obtiene:

=
1

16(πℏ)3/2

(
16

ℏ

√
π

ℏ
(
2q4 + 2p4 + 4q2p2 − 4q2ℏ− 4p2ℏ+ ℏ2

)
e−

1
ℏ (q

2+p2)
)
.

=⇒W2(q, p) =
1

πℏ
e−

1
ℏ (q

2+p2)
(

1

ℏ2
(
2q4 + 2p4 + 4q2p2 − 4q2ℏ− 4p2ℏ+ ℏ2

))
.

De esta última expresión puede notarse que aparecen los polinomios
de Laguerre con argumento igual a 2

ℏ (q
2 + p2), entonces:

W2(q, p) =
1

πℏ
e−

1
ℏ (q

2+p2)L2

(
2

ℏ
(q2 + p2)

)
. (70)

Siguiendo con esto, la función de Wigner para el n-ésimo estado de
Fock puede escribirse como:

Wn(q, p) =
(−1)n

πℏ
e−

1
ℏ (q

2+p2)Ln

(
2

ℏ
(q2 + p2)

)
. (71)
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E.1.2. Usando el operador de desplazamiento D̂(η)

Como se mencionó anteriormente, también puede obtenerse la función
de Wigner para los estados de Fock haciendo uso del operador D̂(η).
Partiendo de la definición para W (α) dada en la Ec. 51 y recordando

que χ(η) = Tr[ρ̂D̂(η)] = Tr[ρ̂eηâ
†−η∗â]:

W (α) =
1

π2

∫
eη

∗α−ηα∗
χ(η)d2η =

1

π2

∫
eη

∗α−ηα∗
⟨ψ|D̂(η)|ψ⟩d2η.

Para el caso en que |ψ⟩ = |n⟩, y usando la fórmula Baker-Campbell-
Hausdorff se tendrá que:

⟨ψ|D̂(η)|ψ⟩ = e−
1
2 |η|

2

⟨n|eηâ
†−η∗â|n⟩.

Si se expanden las exponenciales en una serie de potencias:

eηâ
†
=

∞∑
l=0

ηl

l!
(a†)l,

e−η
∗â =

∞∑
m=0

(−1)m(η∗)m

m!
âm.

=⇒ ⟨n|D̂(η)|n⟩ = e−
1
2 |η|

2
∞∑

l,m=0

(−1)m(η∗)mηl

m!l!
⟨n|(â†)lâm|n⟩.

Por ortogonalidad, esta ecuación es no nula únicamente cuando se
tiene m = l, por lo tanto:

=⇒ ⟨n|D̂(η)|n⟩ = e−
1
2 |η|

2
∞∑
m=0

(−1)m(η∗)mηm

(m!)2
⟨n|(â†)mâm|n⟩

= e−
1
2 |η|

2
∞∑
m=0

(−|η|2)m

(m!)2
⟨n|(â†)mâm|n⟩.

Pero:

51



⟨n|(â†)mâm|n⟩ =

{
0, si n < m

n!
(n−m)! , si n ≥ m

Por lo que se puede utilizar el coeficiente binomial, definido como
C(n,m) =

(
n
m

)
= n!

(n−m)!m! , entonces:

⟨n|D̂(η)|n⟩ = e−
1
2 |η|

2
∞∑
m=0

(−|η|2)m

m!

(
n

m

)
,

sin embargo, esto puede simplificarse más si se observa que ahora se
puede escribir en términos de los polinomios de Laguerre:

Ln(x) =

∞∑
m=0

(
n

m

)
(−1)m

m!
xm

=⇒ ⟨n|D̂(η)|n⟩ = e−
1
2 |η|

2

Ln(|η|2).

De manera que la función de Wigner se puede calcular como:

W (α) =
1

π2

∫
eη

∗α−ηα∗
e−

1
2 |η|

2

Ln(|η|2)d2η. (72)

Ahora, si se considera η = −i(x+iy)
2 = y

2 − ix2 , entonces d
2η = 1

4dxdy
y, además, η∗α− ηα∗ = i(λx+ µy), donde α = λ+ iµ, por lo que:

Wn(α) =
1

4π2

∫
eiλxeiµye

− 1
2

(
x2

4 + y2

4

)
Ln

(
x2

4
+
y2

4

)
dxdy. (73)

Aśı, para n = 0, L0(x) = 1 y por lo tanto:

W0(α) =
1

4π2

∫
eiλxe−

x2

8 dx

∫
eiµye−

y2

8 dy

=
1

4π2

(
2
√
2πe−2λ2

)(
2
√
2πe−2µ2

)
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=⇒W0(α) =
2

π
e−2|α|2 . (74)

Ahora, si se quiere obtener W (q, p), podŕıa tomarse α = 1√
2
(q + ip)

y se obtendŕıa:

W0(α) =
2

π
e−(q2+p2). (75)

Cabe mencionar que, esta ecuación difiere con la Ec. (68) debido a
que, en este contexto se usa una normalización distinta (más útil en el
contexto de la óptica cuántica) y se usa la convención de ℏ = 1, sin
embargo, ambas son representaciones validas para W (q, p).

Para n = 1, L1(x) = 1− x2, por lo que se obtiene:

W0(α) =
1

4π2

∫
eiλxeiµye

− 1
2

(
x2

4 + y2

4

)(
1−

(
x2

4
+
y2

4

))
dxdy

=
1

4π2
(I1 + I2 + I3).

En donde la primer integral es:

I1 =

∫
eiλxe−

x2

8 dx

∫
eiµye−

y2

8 dy

=
(
2
√
2πe−2λ2

)(
2
√
2πe−2µ2

)

I1 = 8πe−2|α|2 .

La segunda será:

I2 = −1

4

∫
x2eiλxe−

x2

8 dx

∫
eiµye−

y2

8 dy

= −1

4

(
8
√
2πe−2λ2

(1− 4λ2)
)(

2
√
2πe−2µ2

)

I2 = −8πe−2α2

(1− 4λ2).
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Finalmente, de manera análoga a I2, la tercera resultará:

I3 = −8πe−2α2

(1− 4µ2)

Sumando las tres integrales, y simplificando términos, la función
W1(α) será tal que:

W1(α) = − 2

π
e−2|α|2(1− 4|α|2).

W1(q, p) = − 2

π
e−(q2+p2))

(
1− 2(q2 + p2)

)
. (76)

De manera semejante, para n = 2, el polinomio de Laguerre es

L2(|α|2) = 1
2

(
(|α|2)2 − 4|α|2 + 2

)
y como |α|2 = x2

4 + y2

4 , entonces:

L2

(
x2

4
+
y2

4

)
=
x4

32
+
x2y2

16
+
x4

32
− x2

2
− y2

2
+ 1.

Por lo que, al sustituir esto en la Ec. 73, deberán resolverse 6 integra-
les. Una vez resueltas, sumadas y simplificando términos, se encuentra
que:

W2(α) =
2

π
e−2|α|2 (8(λ4 + 2λ2µ2 + µ4)− 8(λ2 + µ2) + 1

)
.

Estos tres resultados (para n = 0, 1, 2) también pueden relacionarse
con los polinomios de Laguerre si se nota que, a diferencia de la ecuación
73, el argumento debe ser 4|α|2 = 2(q2 + p2), es decir, para este caso:

W2(α) =
2

π
e−2|α|2L2(4|α|2).

W2(q, p) =
2

π
e−(q2+p2)L2

(
2(q2 + p2)

)
. (77)

Sucesivamente, para el n-ésimo estado se tendrá que:

Wn(α) =
2

π
(−1)ne−2|α|2Ln(4|α|2).

Wn(q, p) =
2

π
(−1)ne−(q2+p2)Ln

(
2(q2 + p2)

)
. (78)
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E.2. Estados Coherentes

En esta sección se presenta con mayor detalle el procedimiento co-
rrespondiente al cálculo de la función de Wigner para estados coherentes.

E.2.1. Usando la función χ(η)

Como se mencionó en la sección 5.2, es útil obtener una función de
cuasiprobabilidad haciendo uso de la función caracteŕıstica; recordando
que para el caso particular de la función de Wigner, esta función está

relacionada con el ordenamiento simétrico de los operadores â y â† (Ec.
51):

W (α) =
1

π2

∫
eη

∗α−ηα∗
χ(η)d2η =

1

π2

∫
eη

∗α−ηα∗
e−

1
2 |η|

2

χN (η)d2η.

Pero, en una base de estados coherentes |β⟩, la cual, aunque sus
elementos no son ortogonales, es una base sobrecompleta, y por lo tanto∫
|β⟩⟨β|d2β = I, entonces:

χN (η) = Tr[ρ̂eηâ
†
e−η

∗â] = ⟨β|eηâ
†
e−η

∗â|β⟩ = eηβ
∗−η∗β .

De manera que, al sustiuirlo en la definición dada en la ecuación
previa:

W (α) =
1

π2

∫
eη

∗α−ηα∗
eηβ

∗−η∗βe−
1
2 |η|

2

d2η

=
1

π2

∫
eη

∗(α−β)−η(α∗−β∗)− 1
2 d2η.

Existe una identidad para la resolución de una integral Gaussiana de
este tipo, mencionada en la Ref. [9]:

∫
eηx+η

∗y−z|η|2d2η =
π

z
e

xy
z . (79)

Si se identifica que:

x = α− β, y = −(α∗ − β∗), z =
1

2
,
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entonces, al simplificar, se obtiene como resultado la ecuación 31:

W (α) =
2

π
e−2|α−β|2 .

E.2.2. Usando la función de onda

Ahora se mostrarán los cálculos realizados para Wα usando la defi-
nición de la Ec. (1), a saber:

W (q, p) =

∫ 〈
q +

1

2
y

∣∣∣∣ ρ̂

2πℏ

∣∣∣∣ q − 1

2
y

〉
e−ipy/ℏdy.

En la que se usará la función de onda de los estados coherentes dada
por:

ψα(x) =

(
1

πℏ

)1/4

e−
1
πℏ (x−

√
2ℏRe(α))

2
+i
√

2
ℏ Im(α)x. (80)

Considerando α = λ+ iµ, y ρ̂ = |β⟩⟨β|, entonces:

W (q, p) =
1

2πℏ

∫
ψα

(
q +

y

2

)
ψ∗
α

(
q − y

2

)
e−ipy/ℏdy, (81)

el producto ψα
(
q + y

2

)
ψ∗
α

(
q − y

2

)
del integrando es (haciendo A =

1
ℏ ):

ψα

(
q +

y

2

)
ψ∗
α

(
q − y

2

)
=

=

√
A

π
e
−A

2

(
(q+ y

2 )−
√

2
Aλ

)2
+i

√
2Aµ(q+ y

2 )e
−A

2

(
(q− y

2 )−
√

2
Aλ

)2
−i

√
2Aµ(q− y

2 ),

(82)

pero el argumento de las exponenciales puede simplificarse:

− A

2

((
q +

y

2

)
−
√

2

A
λ

)2

+ i
√
2Aµ

(
q +

y

2

)

− A

2

((
q − y

2

)
−
√

2

A
λ

)2

− i
√
2Aµ

(
q − y

2

)
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= −A

(
q2 +

y2

4
− 2

√
2

A
qλ+

2λ2

A

)
+ i

√
2Aµy,

por lo tanto, la integral puede escribirse como:

Wα(q, p) =
1

2πℏ

∫ √
A

π
e
−A

(
q2+ y2

4 −2
√

2
A qλ+

2λ2

A

)
+i

√
2Aµy

e−
ipy
ℏ dy.

Al resolverse se llega a:

Wα(q, p) =
1

2πℏ

√
A

π

(
2

√
π

A
e−Aq

2+2
√
2Aqλ−2(λ2+µ2)− p2

Aℏ2 +2
√

2
A

pµ
ℏ

)
,

nuevamente, el argumento de la función exponencial puede simplifi-
carse:

−Aq2 + 2
√
2Aqλ− 2

(
λ2 + µ2

)
− p2

Aℏ2
+ 2

√
2

A

pµ

ℏ

= −A

(
q −

√
2

A
λ

)2

− 1

Aℏ2
(
p−

√
2Aµℏ

)2
.

Por lo que, si se hacen q0 =
√

2
Aλ y p0 =

√
2Aµℏ, como A = 1

ℏ ,

entonces:

Wα(q, p) =
1

πℏ
e−

1
ℏ ((q−q0)

2+(p−p0)2). (83)

E.3. Estados Comprimidos

Ahora es turno de mostrar el desarrollo para calcular la función de
Wigner asociada a los estados comprimidos, los cuales, como se mencionó
en la sección 4.3 son generados a partir de aplicar el operador Ŝ(ξ) a un
estado de vaćıo.

Recordando que:

W (α) =
1

π2

∫
eη

∗α−ηα∗
χ(η)d2η.

Entonces, para ρ̂ = |ξ⟩⟨ξ| se tendrá, para este caso, que χξ(η) =

⟨ξ|D̂(η)|ξ⟩, pero |ξ⟩ = Ŝ(ξ)|0⟩, y como Ŝ(ξ) = e
1
2 (ξ

∗â2−ξâ†2) entonces la
función caracteŕıstica quedará como:
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χξ(η) = ⟨0|Ŝ†(ξ)D̂(η)Ŝ(ξ)|0⟩ = ⟨0|Ŝ†(ξ)eηâ
†−η∗âŜ(ξ)|0⟩.

Pero la acción de Ŝ(ξ) y Ŝ†(ξ) sobre los operadores de creación y
aniquilación es dada por la Ec. (34), por lo tanto:

Ŝ†(ξ)eηâ
†−η∗âŜ(ξ) = D̂ξ

= eη(â
† cosh r−âe−iθ sinh r)−η∗(â cosh r−â†eiθ sinh r)

= eηξâ
†−η∗ξ â,

en donde ηξ(η) = η cosh r + η∗eiθ sinh r, de manera que:

χξ(η) = ⟨0|eηξâ
†−η∗ξ â|0⟩ = e−

1
2 |ηξ|

2

= e−
1
2 (|η|

2 cosh(2r)+ 1
2 (η

2e−iθ+(η∗)2eiθ) sinh(2r)).

Aśı, si η = λ + iµ, α = x + iy y se elige el caso en el que θ = 0,
entonces esta función puede simplificarse a:

χξ(η) = e−
1
2 |η|

2 cosh(2r)− 1
4 (η

2e−iθ+(η∗)2eiθ) sinh(2r)

= e−
1
2 (λ

2+µ2) cosh(2r)− 1
2 (λ

2−µ2) sinh(2r)

= e−
1
2 (λ

2e2r+µ2e−2r).

Por otra parte, se tiene que η∗α − ηα∗ = i2(λy − µx), entonces la
función de Wigner se calcula como:

W (α) =
1

π2

∫
ei2(λy−µx)e−

1
2 (λ

2e2r+µ2e−2r)dλdµ

=
1

π2

∫
ei2λye−

1
2λ

2e2rdλ

∫
e−i2µxe−

1
2µ

2e−2r

dµ

=
1

π2

(
e−r−2e−2ry2

√
2π
)(

er−2e2rx2√
2π
)
.

=⇒Wξ(α) =
2

π
e−2(e2rx2−e−2ry2). (84)

Aqúı se ha presentado un desarrollo algebraico para obtener la fun-
ción Wξ(α), sin embargo, existe una forma más simple de llegar a este
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resultado, el cual es a través de considerar que el operador Ŝ(ξ) rees-
cala la función de onda de acuerdo con ψξ(q) = eξ/2ψ0(e

ξq) (Ec. 37),
entonces, para la definición dada en la Ec. (1) se tendrá que:

Wξ(q, p) =

∫ 〈
q +

1

2
y

∣∣∣∣Ŝ ρ̂

2πℏ
Ŝ†
∣∣∣∣ q − 1

2
y

〉
e−ipy/ℏdy

=
1

2πℏ

∫ 〈
eξ
(
q +

1

2
y

)∣∣∣∣∣ρ̂
∣∣∣∣∣eξ
(
q − 1

2
y

)〉
eξe−ipy/ℏdy.

Es decir: Wξ(q, p) = W0(e
ξq, e−ξp), con lo que, usando el resultado

de la ecuación 23 se tendrá:

Wξ(q, p) =
2

π
e−(e

2ξq2+e−2ξp2). (85)

E.4. Estados de Gato de Schrödinger

Finalmente, llega el turno de calcular la función de Wigner asociada
a los estados del tipo de gato de Schrödinger. Para esto es conveniente
recordar la función de onda de un estado coherente coherente |α⟩, aśı,
nuevamente haciendo A = 1

ℏ :

ψα(q) =

(
A2

πℏ

)1/4

e−
A2

2 (q− λ
A )

2
+iAµq.

Mientras que para el caso en que el estado sea | − α⟩ se tendrá:

ψ−α(q) =

(
A2

πℏ

)1/4

e−
A2

2 (q+ λ
A )

2−iAµq.

Ahora, este tipo de estados, los cuales se denotarán como |Ψ⟩, tienen
la particularidad de que:

|Ψ⟩ = |α⟩+ | − α⟩ =⇒ Ψ(q) = ψα(q) + ψ−α(q).

De esta manera, su función de Wigner asociada será tal que:
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WΨ(q, p) =
1

2πℏ

∫
Ψ
(
q +

y

2

)
Ψ∗
(
q − y

2

)
e−ipy/ℏdy.

Por lo tanto, en el integrando apareceran las funciones de onda:

Ψ
(
q +

y

2

)
Ψ∗
(
q − y

2

)
=

(
ψα

(
q +

y

2

)
+ ψ−α

(
q − y

2

))(
ψ∗
α

(
q +

y

2

)
+ ψ∗

−α

(
q − y

2

))

= ψα

(
q +

y

2

)
ψ∗
α

(
q − y

2

)
+ ψα

(
q +

y

2

)
ψ∗
−α

(
q − y

2

)
+ ψ−α

(
q +

y

2

)
ψ∗
α

(
q − y

2

)
+ ψ−α

(
q +

y

2

)
ψ∗
−α

(
q − y

2

)

=⇒WΨ(q, p) =
1

2πℏ

∫ (
ψα

(
q +

y

2

)
ψ∗
α

(
q − y

2

)
+ψα

(
q +

y

2

)
ψ∗
−α

(
q − y

2

)
+ ψ−α

(
q +

y

2

)
ψ∗
α

(
q − y

2

)
+ ψ−α

(
q +

y

2

)
ψ∗
−α

(
q − y

2

))
e−ipy/ℏdy.

De esta relación puede identificarse que, para los sumandos que con-
tienen los sub́ındices α y −α se obtienen directamente las funciones de
Wigner:

Wα(q, p) =
1

2πℏ

∫
ψα

(
q +

y

2

)
ψ∗
α

(
q − y

2

)
e−ipy/ℏdy

=
1

πℏ
e−

1
ℏ ((q−q0)

2+(p−p0)2),

(86)

W−α(q, p) =
1

2πℏ

∫
ψ−α

(
q +

y

2

)
ψ∗
−α

(
q − y

2

)
e−ipy/ℏdy

=
1

πℏ
e−

1
ℏ ((q+q0)

2+(p+p0)
2).

(87)

Mientras que los dos sumandos restantes (los términos cruzados) se
pueden identificar con la interferencia cuántica particular de los estados
del tipo de gato de Schrödinger, aśı, su función de Wigner asociada será:
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Wint =
1

2πℏ

∫ (
ψα

(
q +

y

2

)
ψ∗
−α

(
q − y

2

)
+ ψ−α

(
q +

y

2

)
ψ∗
α

(
q − y

2

))
e−ipy/ℏdy.

El producto de las funciones de onda del primer sumando es:

ψα

(
q +

y

2

)
ψ∗
−α

(
q − y

2

)
=

A√
π
e−

A2

2 ((q+ y
2 )−

λ
A )

2
+iAµ(q+ y

2 )

× e−
A2

2 ((q− y
2 )+

λ
A )

2
+iAµ(q− y

2 )

=
A√
π
e
−A2

(
q2+( y

2−
λ
A )

2
)
+i2Aµq

,

mientras que para el segundo se tendrá:

ψ−α

(
q +

y

2

)
ψ∗
α

(
q − y

2

)
=

A√
π
e−

A2

2 ((q+ y
2 )+

λ
A )

2−iAµ(q+ y
2 )

× e−
A2

2 ((q− y
2 )−

λ
A )

2−iAµ(q− y
2 )

=
A√
π
e
−A2

(
q2+( y

2+
λ
A )

2
)
−i2Aµq

.

Ahora, dado que Wint(q, p) está conformada por una suma de dos
productos de funciones de onda, entonces se tendrán 2 integrales que
resolver, las cuales serán:

Wint1(q, p) =
1

2πℏ

∫
ψα

(
q +

y

2

)
ψ∗
−α

(
q − y

2

)
e−ipy/ℏdy

=
1

2πℏ

∫
A√
π
e
−A2

(
q2+( y

2−
λ
A )

2
)
ei(2Aµq−py/ℏ)dy

=
1

2πℏ

(
A√
π

)(
2
√
π

A

)
e
−
(
( p

Aℏ )
2
+A2q2+i2( pλ

Aℏ−Aµq)
)

=
1

πℏ
e
−
(
A2q2+( p

Aℏ )
2
+i( pλ

Aℏ−Aµq)
)
,

(88)
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y para la segunda integral:

Wint2(q, p) =
1

2πℏ

∫
ψ−α

(
q +

y

2

)
ψ∗
α

(
q − y

2

)
e−ipy/ℏdy

=
1

2πℏ

∫
A√
π
e
−A2

(
q2+( y

2+
λ
A )

2
)
e−i(2Aµq+py/ℏ)dy

=
1

2πℏ

(
A√
π

)(
2
√
π

A

)
e
−
(
( p

Aℏ )
2
+A2q2−i2( pλ

Aℏ−Aµq)
)

=
1

πℏ
e
−
(
A2q2+( p

Aℏ )
2−i( pλ

Aℏ−Aµq)
)
.

(89)

Entonces, al sumar estos resultados se obtiene que:

Wint1(q, p) +Wint2(q, p) =
1

πℏ
e
−
(
A2q2+( p

Aℏ )
2
) (
e−i2(

pλ
Aℏ−Aµq) + ei2(

pλ
Aℏ−Aµq)

)
,

pero como eix + e−ix = 2 cosx, entonces esto se simplifica a:

Wint(q, p) =Wint1(q, p) +Wint2(q, p)

=
2

πℏ
e
−
(
A2q2+( p

Aℏ )
2
)
cos

(
2

(
pλ

Aℏ
−Aµq

))
,

(90)

por lo que, si se recuerda que A = 1√
ℏ , q0 = λ

A y p0 = Aµℏ, entonces

Wint(q, p) =
2

πℏ
e−

1
ℏ (q

2+p2) cos

(
2√
ℏ
(pλ− µq)

)
= 2W0(q, p) cos

(
2√
ℏ
(pλ− µq)

)
.

(91)

finalmente, la función de Wigner de los estados de gato de Schrödin-
ger es:

WΨ(q, p) =Wα(q, p) +W−α(q, p) +Wint(q, p). (92)
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F. Evolución temporal

Partiendo de derivar la función de Wigner con respecto a t:

∂W

∂t
=

1

2πℏ

∫
e−ipy/ℏ

(
∂ψ∗(q − y/2)

∂q
ψ(q + y/2)

+
∂ψ(q + y/2)

∂q
ψ∗(q − y/2)

)
dy, (93)

y considerando que de la ecuación de Schrödinger se tiene:

∂ψ(x, t)

∂t
= − ℏ

i2m

∂2ψ(x, t)

∂x2
+

1

iℏ
U(x)ψ(x, t),

entonces al sustituir y simplificar, se tendrá:

∂W

∂t
=

1

2πℏ

∫
e−ipy/ℏ

[
ℏ
i2m

(
∂2ψ∗(q − y

2 )

∂q2
ψ

(
q +

y

2

)

−
∂2ψ(q + y

2 )

∂q2
ψ∗
(
q − y

2

))
+

1

iℏ

(
U

(
q +

y

2

)
ψ

(
q +

y

2

)
ψ∗
(
q − y

2

)

− U

(
q − y

2

)
ψ

(
q +

y

2

)
ψ∗
(
q − y

2

))]
dy,

pero esto se puede escribir como:

∂W

∂t
=
∂WT

∂t
+
∂WU

∂t
,

en donde, debido a que ℏ = h
2π :

∂WT

∂t
=

1

i4πm

∫
e−ipy/ℏ

(
∂2ψ∗(q − y/2)

∂q2
ψ(q + y/2)

− ∂2ψ(q + y/2)

∂q2
ψ∗(q − y/2)

)
dy. (94)
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∂WU

∂t
=

2π

ih2

∫
e−ipy/ℏ

(
U(q + y/2)− U(q − y/2)

)
× ψ(q + y/2)ψ∗(q − y/2)dy. (95)

Pero se tiene:

∂2ψ∗(q − y/2)

∂y∂q
= −1

2

∂2ψ∗(q − y/2)

∂q2
.

Por lo tanto, la integral del primer término de la Ec. (94) será:

∫
e−ipy/ℏ

∂2ψ∗(q − y/2)

∂q2
ψ(q + y/2)dy

= −2

∫
e−ipy/ℏ

∂2ψ∗(q − y/2)

∂y∂q
ψ(q + y/2)dy,

al integrar por partes, el resultado de esta integral es:

− 2ip

ℏ

∫
e−ipy/ℏ

∂ψ∗(q − y/2)

∂q
ψ(q + y/2)dy

+

∫
e−ipy/ℏ

∂ψ∗(q − y/2)

∂q

∂ψ(q + y/2)

∂q
dy, (96)

ahora, para la integral del segundo término de la Ec. (94), dado que:

∂2ψ(q + y/2)

∂y∂q
=

1

2

∂2ψ(q + y/2)

∂q2
,

entonces:

∫
e−ipy/ℏ

∂2ψ(q + y/2)

∂q2
ψ∗(q − y/2)dy

= 2

∫
e−ipy/ℏ

∂2ψ(q + y/2)

∂y∂q
ψ∗(q − y/2)dy,

al integrar por partes, el resultado de la integral será:

2ip

ℏ

∫
e−ipy/ℏ

∂ψ(q + y/2)

∂q
ψ∗(q − y/2)dy

+

∫
e−ipy/ℏ

∂ψ∗(q − y/2)

∂q

∂ψ(q + y/2)

∂q
dy. (97)
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Pero la Ec. (94) contiene una resta de integrales (omitiendo la cons-
tante 1

i4πm ), a saber:

∫
e−ipy/ℏ

∂2ψ∗(q − y/2)

∂q2
ψ(q + y/2)dy

−
∫
e−ipy/ℏ

∂2ψ(q + y/2)

∂q2
ψ∗(q − y/2)dy, (98)

cuyos resultados están dados por las Ecs. (96), para la primera, y
(97) para la segunda, de manera que al restarse se obtiene:

−2ip

ℏ

∫
e−ipy/ℏ

(
∂ψ∗(q − y/2)

∂q
ψ(q + y/2) +

∂ψ(q + y/2)

∂q
ψ∗(q − y/2)

)
dy,

por lo tanto:

∂WT

∂t
= − i4πp

h

∂

∂x

∫
e−ipy/ℏψ∗

(
q − y

2

)
ψ
(
q +

y

2

)
dy = − p

m

∂W (q, p)

∂x
.

(99)

Por otra parte, si se considera que, de la Ec. (95), es posible desarro-
llar la función U(x) en una serie de Taylor, de manera que:

U(q + y/2) = U(q) +
y

2
U ′(q) +

1

2!

(y
2

)2
U ′′(q) + . . . =

∞∑
n=0

1

n!

∂nU(q)

∂qn

(y
2

)n
,

U(q − y/2) = U(q)− y

2
U ′(q) +

1

2!

(y
2

)2
U ′′(q) + . . . =

∞∑
n=0

1

n!

∂nU(q)

∂qn

(
−y
2

)n
,

entonces:

U(q + y/2)− U(q − y/2) =

∞∑
n=0

1

n!

∂nU(q)

∂qn

((y
2

)n
−
(
−y
2

)n)
.
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Pero de aqúı puede notarse que, para n par,
(
y
2

)n −
(
−y

2

)n
= 0,

mientras que para n impar, los términos se suman, es decir, se obtiene(
y
2

)n −
(
−y

2

)n
= 2

(
y
2

)n
, por lo que se puede hacer n = 2s + 1, con lo

que:

U(q + y/2)− U(q − y/2) =

∞∑
n=0

1

(2s+ 1)!

∂2s+1U(q)

∂q2s+1

(
1

2

)2s

y2s+1.

Ahora, multiplicar n veces la función e−ipy/ℏ por y equivale a deri-
varla n veces con respecto a p, es decir:

yne−ipy/ℏ = (iℏ)n
∂n

∂pn
e−ipy/ℏ,

aśı, considerando estos resultados y la condición que se obtuvo, los
posibles valores que toma n, es decir n = 2s+1, y por lo tanto (iℏ)2s+1 =
(−1)siℏ2s+1, entonces la Ec. (95) será:

∂WU

∂t
=

2π

iℏ2
∞∑
s=0

(−1)siℏ2s+1

(2s+ 1)!

∂2s+1U(q)

∂q2s+1

(
1

2

)2s

× ∂2s+1

∂p2s+1

∫
e−ipy/ℏψ∗

(
q − y

2

)
ψ
(
q +

y

2

)
dy.

Por lo tanto, al considerar la definición de la función de Wigner (Ec.
(1)) esto será:

=

∞∑
s=0

(−ℏ2)s
1

(2s+ 1)!

(
1

2

)2s
∂2s+1U(q)

∂q2s+1

(
∂

∂p

)2s+1

W (q, p). (100)

Esto conduce, finalmente, a que:

∂W (q, p)

∂t
= − p

m

∂W (q, p)

∂x

+

∞∑
s=0

(−ℏ2)s
1

(2s+ 1)!

(
1

2

)2s
∂2s+1U(q)

∂q2s+1

(
∂

∂p

)2s+1

W (q, p). (101)
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G. Códigos para las gráficas

En esta sección se comparten los códigos (escritos en Python) que
se usaron para realizar las gráficas del presente trabajo. En general, las
paqueteŕıas que se han importado son las siguientes:

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import hermite
from math import factorial
from scipy.special import genlaguerre
from mpl_toolkits.mplot3d import Axes3D
from scipy.special import factorial

Figura 1: Función de onda para un estado de Fock.
# Función de onda para un estado de Fock
def funcionDeOnda_Fock(n, x):

Hn = hermite(n)
normalizacion = 1 / np.sqrt(np.sqrt(np.pi) * 2**n * factorial(n))
return normalizacion * Hn(x) * np.exp(-x**2 / 2)

x = np.linspace(-5, 5, 500)

# Graficar las funciones de onda para diferentes valores de n
plt.figure(figsize = (10, 6))
for n in range(4):

psi_n = funcionDeOnda_Fock(n, x)
plt.plot(x, psi_n, label = f'$n = {n}$')

plt.title("Función de onda $\psi_n(x)$ para los estados de Fock")
plt.xlabel("$x$")
plt.ylabel("$\psi_n(x)$")
plt.axhline(0, color ='black', linewidth = 0.8, linestyle = '--')
plt.legend()
plt.grid()
plt.show()
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Figura 2: Densidad de probabilidad de los estados de
Fock.

# Función de onda en el espacio de posición
def funcionDeOnda_Fock(n, x):

Hn = hermite(n)
normalizacion = 1 / np.sqrt(np.sqrt(np.pi) * 2**n * factorial(n))
return normalizacion * Hn(x) * np.exp(-x**2 / 2)

x = np.linspace(-5, 5, 500)

# Graficar las distribuciones de probabilidad para diferentes valores de n
plt.figure(figsize = (10, 6))
for n in range(4):

psi_n = funcionDeOnda_Fock(n, x)
plt.plot(x, psi_n**2, label = f'$n = {n}$')

plt.title('Proyección de $|\\psi(q)|^2$ sobre $q$')
plt.xlabel('$q$')
plt.ylabel('$|\\psi(q)|^2$')
plt.legend()
plt.grid()
plt.show()

Figura 3: Función de Wigner para estados de Fock en
2D.

plt.figure(figsize=(12, 8))

# Graficar en 2D para diferentes valores de n
for n in range(4):

W = W_fock[n]
plt.subplot(2, 2, n + 1)
plt.contourf(Q, P, W, levels=100, cmap="inferno", vmin=W_min, vmax=W_max)
plt.title(f"Función de Wigner para $| {n} \\rangle $")
plt.xlabel("$q$")
plt.ylabel("$p$")
plt.colorbar(label="$W(q, p)$")
plt.axhline(0, color="black", linestyle="--", linewidth=0.5)
plt.axvline(0, color="black", linestyle="--", linewidth=0.5)

plt.tight_layout()
plt.show()
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Figura 4: Función de Wigner para estados de Fock en
R3.

fig = plt.figure(figsize=(20, 20))

# Graficar en 3D para diferentes valores de n
for n in range(4):

W = W_fock[n]

ax = fig.add_subplot(2, 2, n + 1, projection='3d')
surf = ax.plot_surface(Q, P, W, cmap="inferno", edgecolor='black',

lw=0.1, alpha=0.9, vmin=W_min, vmax=W_max)

ax.set_title(f"Función de Wigner para $| {n} \\rangle $", fontsize=20)
ax.set_xlabel("$q$", fontsize=18)
ax.set_ylabel("$p$", fontsize=18)
ax.set_zlabel("$W(q, p)$", fontsize=18)
if n == 0 or n == 2:

ax.view_init(15, 210) # Ángulo de vista
if n == 1 or n == 3:

ax.view_init(15, 210) # Ángulo de vista

plt.tight_layout()
plt.show()

Figura 5: Distribución de probabilidades de un estado
coherente en la base de Fock.

# Distribución de probabilidades en la base de Fock
def coherent_fock_distribution(alpha, n_max):

n = np.arange(n_max + 1)
probabilidades = np.abs(alpha**n / np.sqrt(factorial(n)))**2 * np.exp(-np.abs(alpha)**2)
return n, probabilidades

# Parámetros del estado coherente
alpha = 4
n_max = 35

n, probabilidades = coherent_fock_distribution(alpha, n_max)

plt.figure(figsize = (10, 6))
plt.bar(n, probabilidades, color = "blue", alpha = 0.7, edgecolor = "black")
plt.title("Distribución de probabilidades en la base de Fock para $|\\alpha \\rangle$")
plt.xlabel("$n$")
plt.ylabel("$P(n)$")
plt.xlim(0, n_max)
plt.show()
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Figura 6: Función de Wigner para un estado coherente
desplazado.

def wigner_fock_state(n, q, p):
alpha_squared = q**2 + p**2
Ln = genlaguerre(n, 0)
W = (2 / np.pi) * ((-1)**n) * Ln(4 * alpha_squared) * np.exp(-2 * alpha_squared)
return W

def wigner_coherent(q, p, beta_re, beta_im):
alpha_sq = (q - beta_re)**2 + (p - beta_im)**2
return (2 / np.pi) * np.exp(-2 * alpha_sq)

def wigner_squeezed(q, p, r, theta):
X1 = q * np.cos(theta) + p * np.sin(theta)
X2 = -q * np.sin(theta) + p * np.cos(theta)
return (2 / np.pi) * np.exp(-0.5 * (X1**2 * np.exp(-2 * r) + X2**2 * np.exp(2 * r)))

q = np.linspace(-3, 3, 1000)
p = np.linspace(-3, 3, 1000)
Q, P = np.meshgrid(q, p)

W_fock = [wigner_fock_state(n, Q, P) for n in range(4)]
W_coherent = [wigner_coherent(Q, P, beta_re, beta_im)

for beta_re, beta_im in [(0, 0), (1, 1), (-1, 2), (2, -1)]]
W_squeezed = [wigner_squeezed(Q, P, 0.7, np.pi)]

W_min = min(W.min() for W in W_fock + W_coherent + W_squeezed)
W_max = max(W.max() for W in W_fock + W_coherent + W_squeezed)

W = W_coherent[1]

fig = plt.figure(figsize=(16, 7))

# Gráfica 2D
ax1 = fig.add_subplot(1, 2, 1)
contour = ax1.contourf(Q, P, W, levels=100, cmap="seismic", vmin=W_min, vmax=W_max)
ax1.set_xlabel("$q$", fontsize=23)
ax1.set_ylabel("$p$", fontsize=23)
ax1.axhline(0, color="black", linestyle="--", linewidth=0.5)
ax1.axvline(0, color="black", linestyle="--", linewidth=0.5)

# Gráfica 3D
ax2 = fig.add_axes([0.3, 0, 0.9, 1.1], projection='3d')
surf = ax2.plot_surface(Q, P, W, cmap="seismic", edgecolor="black", lw=0.1, alpha=0.9,

vmin=W_min, vmax=W_max)
ax2.set_xlabel("$q$", fontsize=23)
ax2.set_ylabel("$p$", fontsize=23)
ax2.set_zlabel("$W(q, p)$", fontsize=23)
ax2.view_init(15, 260)

text1 = 'Función de Wigner para un estado coherente desplazado a ($1,1$)'

fig.suptitle(text1, fontsize=23)
fig.subplots_adjust(bottom=0.2, wspace=0.3)
cbar_ax = fig.add_axes([0.2, 0.05, 0.6, 0.03])
cbar_ax.set_xlabel("$W(q, p)$", fontsize=14)
fig.colorbar(surf, cax=cbar_ax, orientation='horizontal', label="$W(q, p)$")

plt.show()
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Figura 7: Función de Wigner para un estado compri-
mido.

def wigner_fock_state(n, q, p):
alpha_squared = q**2 + p**2
Ln = genlaguerre(n, 0)
W = (2 / np.pi) * ((-1)**n) * Ln(4 * alpha_squared) * np.exp(-2 * alpha_squared)
return W

def wigner_coherent(q, p, beta_re, beta_im):
alpha_sq = (q - beta_re)**2 + (p - beta_im)**2
return (2 / np.pi) * np.exp(-2 * alpha_sq)

def wigner_squeezed(q, p, r, theta):
X1 = q * np.cos(theta) + p * np.sin(theta)
X2 = -q * np.sin(theta) + p * np.cos(theta)
return (2 / np.pi) * np.exp(-0.5 * (X1**2 * np.exp(-2 * r) + X2**2 * np.exp(2 * r)))

q = np.linspace(-6, 6, 600)
p = np.linspace(-6, 6, 600)
Q, P = np.meshgrid(q, p)

W_fock = [wigner_fock_state(n, Q, P) for n in range(4)]
W_coherent = [wigner_coherent(Q, P, beta_re, beta_im)

for beta_re, beta_im in [(0, 0), (1, 1), (-1, 2), (2, -1)]]
W_squeezed = [wigner_squeezed(Q, P, 0.7, np.pi)]

W_min = min(W.min() for W in W_fock + W_coherent + W_squeezed)
W_max = max(W.max() for W in W_fock + W_coherent + W_squeezed)

W = W_squeezed[0]

fig = plt.figure(figsize=(16, 7))

# Gráfica 2D
ax1 = fig.add_subplot(1, 2, 1)
contour = ax1.contourf(Q, P, W, levels=100, cmap="seismic", vmin=W_min, vmax=W_max)
ax1.set_xlabel("$q$", fontsize=23)
ax1.set_ylabel("$p$", fontsize=23)
ax1.axhline(0, color="black", linestyle="--", linewidth=0.5)
ax1.axvline(0, color="black", linestyle="--", linewidth=0.5)

# Gráfica 3D
ax2 = fig.add_axes([0.3, 0, 0.9, 1.1], projection='3d')
surf = ax2.plot_surface(Q, P, W, cmap="seismic", edgecolor="black", lw=0.1, alpha=0.9,

vmin=W_min, vmax=W_max)
ax2.set_xlabel("$q$", fontsize=23)
ax2.set_ylabel("$p$", fontsize=23)
ax2.set_zlabel("$W(q, p)$", fontsize=23)
ax2.view_init(15, 30)

fig.suptitle('Función de Wigner para un estado comprimido', fontsize=23)
fig.subplots_adjust(bottom=0.2, wspace=0.3)
cbar_ax = fig.add_axes([0.2, 0.05, 0.6, 0.03])
cbar_ax.set_xlabel("$W(q, p)$", fontsize=14)
fig.colorbar(surf, cax=cbar_ax, orientation='horizontal', label="$W(q, p)$")

plt.show()
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Figura 8: Función de Wigner para un estado de gato
de Schrödinger.

def wigner_fock_state(n, q, p):
alpha_squared = q**2 + p**2
Ln = genlaguerre(n, 0)
W = (2 / np.pi) * ((-1)**n) * Ln(4 * alpha_squared) * np.exp(-2 * alpha_squared)
return W

def wigner_coherent(q, p, beta_re, beta_im):
alpha_sq = (q - beta_re)**2 + (p - beta_im)**2
return (2 / np.pi) * np.exp(-2 * alpha_sq)

def wigner_squeezed(q, p, r, theta):
X1 = q * np.cos(theta) + p * np.sin(theta)
X2 = -q * np.sin(theta) + p * np.cos(theta)
return (2 / np.pi) * np.exp(-0.5 * (X1**2 * np.exp(-2 * r) + X2**2 * np.exp(2 * r)))

def W_Pos(q, p, q0, p0):
alpha_sq = (q-q0)**2 + (p-p0)**2
return (1 / np.pi) * np.exp(-2*alpha_sq)

def W_Neg(q, p, q0, p0):
alpha_sq = (q+q0)**2 + (p+p0)**2
return (1 / np.pi) * np.exp(-2*alpha_sq)

def W_int(q, p, q0, p0):
arg_cos = 2 * (p*q0 - q*p0)
return (2 / np.pi) * np.exp(-2*(q**2 + p**2) ) * np.cos(arg_cos)

q = np.linspace(-6, 6, 600)
p = np.linspace(-6, 6, 600)
Q, P = np.meshgrid(q, p)

q0 = 3.0
p0 = 3.0

W_fock = [wigner_fock_state(n, Q, P) for n in range(4)]
W_coherent = [wigner_coherent(Q, P, beta_re, beta_im)

for beta_re, beta_im in [(0, 0), (1, 1), (-1, 2), (2, -1)]]
W_squeezed = [wigner_squeezed(Q, P, 0.7, np.pi)]
W_cat = W_Pos(Q, P, q0, p0) + W_Neg(Q, P, q0, p0) + W_int(Q, P, q0, p0)

W_min = min(W.min() for W in W_fock + W_coherent + W_squeezed)
W_max = max(W.max() for W in W_fock + W_coherent + W_squeezed)

W = W_cat

fig = plt.figure(figsize=(16, 7))

# Gráfica 2D
ax1 = fig.add_subplot(1, 2, 1)
contour = ax1.contourf(Q, P, W, levels=100, cmap="seismic", vmin=W_min, vmax=W_max)
ax1.set_xlabel("$q$", fontsize=23)
ax1.set_ylabel("$p$", fontsize=23)
ax1.axhline(0, color="black", linestyle="--", linewidth=0.5)
ax1.axvline(0, color="black", linestyle="--", linewidth=0.5)

# Gráfica 3D
ax2 = fig.add_axes([0.3, 0, 0.9, 1.1], projection='3d')
surf = ax2.plot_surface(Q, P, W, cmap="seismic", edgecolor="black", lw=0.1, alpha=0.9,

vmin=W_min, vmax=W_max)
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ax2.set_xlabel("$q$", fontsize=23)
ax2.set_ylabel("$p$", fontsize=23)
ax2.set_zlabel("$W(q, p)$", fontsize=23)
ax2.view_init(15, 30)

fig.suptitle('Función de Wigner para un estado de gato de Schrödinger', fontsize=23)
fig.subplots_adjust(bottom=0.2, wspace=0.3)
cbar_ax = fig.add_axes([0.2, 0.05, 0.6, 0.03])
cbar_ax.set_xlabel("$W(q, p)$", fontsize=14)
fig.colorbar(surf, cax=cbar_ax, orientation='horizontal', label="$W(q, p)$")

plt.show()
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