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1. Introduccion.

La fisica es la rama de la ciencia que se dedica a estudiar los fenéme-
nos que ocurren en la naturaleza, desde el movimiento de los planetas
hasta las interacciones de las particulas mas diminutas. Tradicionalmen-
te, la mecéanica clésica ha sido la herramienta principal para describir el
comportamiento de los objetos en el mundo macroscépico (objetos gran-
des que podemos ver y tocar), utilizando conceptos como la posicién, la
velocidad y la energia para predecir su evoluciéon con total precision.

Sin embargo, a principios del siglo XX, los cientificos se encontraron
con que estas leyes no eran suficientes para explicar el comportamien-
to de la materia a escalas microscopicas, como el de los atomos y las
particulas subatémicas. Fue entonces que surgié la mecanica cuantica,
una nueva teoria que revolucioné nuestra comprensién del universo plan-
teando preguntas y respuestas nuevas e innovadoras.

Una de las diferencias fundamentales entre ambas teorias es la for-
ma en que describen el estado de un sistema. En la mecanica clasica, el
estado de un sistema se representa en un espacio fase, donde cada pun-
to (q, p) representa una configuracién posible, definida por el vector de
coordenadas generalizadas (q) y el vector de momentos conjugados (p)
de todos los grados de libertad del sistema. Conocer estos dos valores de
manera precisa en un instante dado nos permite predecir el futuro del
sistema con total exactitud. Sin embargo, aunque esta descripcion es ge-
neral, por simplicidad, en el desarrollo de este trabajo nos restringiremos
a sistemas de un solo grado de libertad. Por lo que, se usard la notacién
escalar (g, p) para hacer referencia a las coordenadas del espacio fase.

A diferencia de la mecdnica cldsica, la mecdnica cudntica no per-
mite conocer simultdneamente la posicién y el momento lineal de una
particula con total precisiéon. Esto se debe al principio de incertidumbre
de Heisenberg, que establece que cuanto méas precisamente se conoce una
de estas propiedades, menos se conoce la otra. Debido a esta limitacién,
en la mecanica cuantica el estado de un sistema no se puede describir
con un punto en el espacio fase. En su lugar, se utiliza una funcién de
onda, que puede ser dependiente de la posicién (¥(q)) o del momento
(¢(p)), pero no de ambas al mismo tiempo.

Por esta limitacién impuesta por el principio de incertidumbre de
Heisenberg, no es posible definir una distribucién de probabilidad en el
espacio fase cudntico de la misma manera que en la mecédnica clésica.
Esto se debe a que no existe un punto exacto que represente la posicién
y el momento simultdneamente, como si ocurre en la mecanica clésica.
Lo que es posible es que un punto en este espacio represente el valor



esperado de un operador en ese espacio.

Por otra parte, en la formulacién estdndar de la mecénica cudntica,
la densidad de probabilidad en el espacio de posiciones, p(q), es dada por
p(q) = |¥(q)|?, mientras que, en el espacio de momentos, p(p) = | (p)|>.
Sin embargo, existe un tipo de funciones, llamadas funciones de cuasi-
probabilidad que pueden expresarse en términos de ambas variables,
P(q,p), y tienen cierta semejanza con las funciones de distribucién en el
espacio fase ya que permiten expresar promedios cuanticos matematica-
mente parecidos a los clasicos, de modo que pueda facilitarse el abordar
este problema.

Cabe mencionar que dichas funciones no son propiamente una distri-
bucién de probabilidades como tal, ya que pueden tomar valores ne-
gativos. No obstante, resultan ser una herramienta matematica muy
poderosa y ttil para el estudio de sistemas cudnticos, ya que permite
calcular promedios y analizar el comportamiento de sistemas de este ti-
po en términos de las variables candnicas de posiciéon ¢ y momento p,
ademds de brindar informacién acerca de las posibles conexiénes entre
la mecéanica clasica y cudntica.

Algunas de estas funciones de cuasi-probabilidad son atribuidas a
Kodi Husimi (1909-2008), Roy J. Glauber (1925-2018) y Eugene Wigner
(1902-1995), siendo este ultimo quien propuso la funcidn de Wigner, la
cual se tratarda con mayor detalle en este trabajo, sin embargo, el motivo
para usar una u otra funcién es mera conveniencia.

2. Distribucién de Wigner.

Esta distribucién (también llamada funcion de Wigner) es, en reali-
dad, una representacion de un sistema cuantico en términos de una fun-
cién en el espacio fase. Esto es 1til para visualizar el comportamiento de
los estados cuanticos de manera semejante a como se hace en la mecénica
clasica.

En general, para un sistema en un estado mixto representado por
una matriz de densidad p(¢”,q’) (y por ende, un operador p asociado,
conocido como operador de densidad), la funcién de Wigner esté definida
como [11 2]:

W - 1 p 1 —ipy/h
4= - YR dy. 1
(¢,p) /<q 2y'27rh’q 2y>6 Y (1)



Aqui, h = % es la constante de Planck reducida. Es notable que
esta ecuacion es la transformada de Fourier de p con respecto a la posi-
cién. Cabe mencionar que, segun la normalizacién empleada, la expresién
para W(q,p) podria tomar una forma ligeramente distinta, sin embar-
go, la eleccién de una u otra normalizacion depende de la convencién
de unidades empleada (por ejemplo, el uso de unidades atémicas donde
h = 1) o para simplificar el cdlculo de las distribuciones marginales de
probabilidad.

Puede interpretarse la Ec. al asociarse con la descripcién del mo-
vimiento de una particula de una posicién hacia otra (¢’ — ¢”). Asi, de
manera andloga a la transicién de un dtomo en el nivel n’ hacia el n”,
en el que realmente no importa cémo es el movimiento en dichos niveles
sino el salto que se da entre ellos, este cambio de posicién estaria defini-
do por una distancia relativa y = ¢” — ¢’. De este modo, el elemento de
matriz (¢”|p|q’) representa la relacién espacial entre dichos puntos [2],
siendo y = (¢’ + ¢")/2 el centro del salto, lo cual incita a pensar en las
coordenadas ¢’ y ¢” como [2]:

Dicho esto, queda una mejor comprensién de la definicion de la fun-
cién de Wigner, Ec. , que se puede entender como una representacién
del estado de un sistema cudntico en el espacio fase.

Si ahora se considera un estado puro, es decir, un sistema caracteri-
zado completamente por un unico vector de estado, con funcién de onda
dependiente de la posicién 1(q), con un operador de densidad asociado
p = |v) (1], esta ecuacién se simplifica a:

Wi(g,p) = ﬁlh /w* (q + ;y) P (q —~ ;y> e~ /My, (2)

Por supuesto, la funcién de Wigner, Ec. , puede generalizarse a n
dimensiones [3 [4], extensién necesaria para describir sistemas con multi-
ples grados de libertad, como el movimiento en el espacio tridimensional.
A lo largo del texto, las integrales se haran sobre todo el espacio y, a
menos que se indique lo contrario, se trabajara con estados puros.



2.1. Operador de Wigner y el operador de paridad
desplazada

Ademds de su definicién integral, la funcién de Wigner W(q,p) se
puede expresar de una forma alternativa a través del operador de Wigner,
W(q,p). Este operador, también conocido como el operador de paridad
desplazada [1], es una herramienta 1til en el cdlculo y la interpretacién
de la funcién de Wigner.

La razén de este nombre reside en la forma en que el operador estéd
construido. Se puede entender como una combinacién del operador de
desplazamiento y el operador de paridad.

El operador de paridad II es un operador que invierte la posiciéon y
el momento de un sistema, reflejando el estado a través del origen, como
si fuera un espejo. Se define de la siguiente manera:

1= [dal -~ )l = [ dplp) (-5l = g [k [eF0TPas (3

Por otro lado, el operador de desplazamiento, ﬁ(q,p) = en(Pi—ap)
tiene la funcién de desplazar el sistema hacia el punto (g, p) del espacio
fase.

Combinando ambos operadores, es posible definir el operador de pa-
ridad desplazada, ﬂq,p, que no es mas que el operador II después de
haber sido desplazado por ﬁ(q,p) hacia el punto (g, p) [5, [6], esto es:

1, , = D(g,p)TID (g, p)- (4)

Debe hacerse mencion de la estrecha relacion del operador de Wigner
con esta paridad. Puede mostrarse que W es proporcional a 12[“, (véase
el Apéndice . Si se expresa este operador en la base de posiciones, se
obtiene la forma integral [I]:

A 1 4 1
W(g,p) = / ’q - 28> e iw/h <q + 35

A pesar de tener una definicién diferente, el efecto fisico de ambos
operadores es el mismo: la accion de reflexiéon alrededor de un punto
(g, p) en el espacio fase cudntico. Por parte del operador de Wigner, esto
se ilustra mediante [I]:

ds. (5)

W(a.p)ld) =2¢—d"), W(gp)p)=I2p—p). (6)



Estas relaciones muestran que el operador de Wigner toma un estado
con posicién ¢’ y lo transforma en un estado con posicién 2¢ — ¢’, lo cual
es precisamente la definicién de una reflexion alrededor del punto ¢. Lo
mismo ocurre con el momento.

La funcién de Wigner de un estado cudntico, representado por el
operador de densidad p se calcula usando el operador de Wigner a través
de la relacién [I]:

P
w =Tr |——W . 7
(¢,p) = Tr {%h (q,p)] (7)
Para un estado puro [¢), donde p = |¢)(¢)], la expresién anterior

se puede reescribir de forma equivalente usando el operador de paridad
desplazada I, , [5} [6]:

Wap) = 2@l le) = (@Il TD @ p)l).  (9)

La conexién entre estas dos expresiones se debe a la relacién de pro-
porcionalidad entre los operadores, W(q, p) = 47Tf[q,p. Esta relacion se
discute con mayor detalle en el Apéndice [A]

La relacién entre la funcién de Wigner en términos de flqyp tiene
una interpretacion fisica: La funcién de Wigner en el punto (g, p) mide
la superposicién entre el estado ¢ con su reflejo en el espacio fase [5].
Esto se debe a que, primero, lﬁlqm refleja el estado |¢) y posteriormente,
cuando ya se tiene este estado reflejado, se realiza el producto interno
entre el estado reflejado y el original.

3. Propiedades de la funcion de Wigner

Tras haber dado la definicién de la funcién de Wigner y los conceptos
fundamentales de su construccion, es ttil ahora analizar sus propieda-
des matematicas fundamentales, las cuales la distinguen de otras dis-
tribuciones y, ademads, proporcionan una visién maés profunda sobre su
comportamiento en sistemas cudnticos.

3.1. Hermiticidad y realidad

La funcién de Wigner es una funcién real, es decir, W(q, p) = W*(q,p)
[3], de modo que para un estado puro, debe ser una forma hermitica del
estado [1(q)).



A pesar de que los estados cuanticos y los operadores son complejos,
esta funcién siempre es real debido a que su definicién es dada mediante
una integral que involucra el producto de la funcién de onda con su
complejo conjugado. Esto implica que su interpretacién podria ser la de
una densidad, aunque no necesariamente en el sentido clasico, ya que,
no debe olvidarse que W (g, p) puede adquirir valores negativos.

3.2. Proyeccion sobre ¢ y p

Una propiedad que apoya la interpretacién de la funcion de Wigner
como un andalogo de la densidad de probabilidad en el espacio fase es
que sus proyecciones sobre los ejes de posicién (¢) o de momento (p)
recuperan las distribuciones de probabilidad marginales.

Integrar esta funcién sobre cada valor posible de p resulta en la den-
sidad de probabilidad de hallar la particula en la posicién g:

/W@@@:Wm%4mmEW@. (9)

Anélogamente, la densidad de probabilidad del momento |1(p)|? se
obtiene si se integra sobre cada valor posible de la posicién ¢ [2].

Esto quiere decir que la proyeccién de W(q,p) sobre alguno de los
ejes, q o p, da la distribucién de probabilidad en esa variable. Estos
valores coinciden con las predicciones estandar de la mecdnica cudntica,

es decir, las densidades [1(q)|? v |¢(p)|* .

3.3. Normalizacion

Para que la funcién de Wigner pueda tomar un sentido “probabilisti-
co”, también debe cumplirse la normalizacién de esta cuasi-probabilidad
[3, 4], es decir:

/@/Wmmwzﬁsz (10)

Junto con el resultado de la Ec. , se tiene que Tr[p?] < 1, cum-
pliendose la igualdad inicamente en el caso de estados puros (los cuales
seran objeto de estudio en este trabajo), entonces, para estos estados:

# = p Ml



3.4. Invarianzas

La funcién de Wigner, también cumple con ciertas caracteristicas,
como la invarianza Galileana, es decir, si la funcién de onda del sistema
se desplaza espacialmente o es multiplicada por una fase, W(q,p) se
transforma de manera correspondiente [3].

Ademsés, también goza de invarianza frente a reflexiones espaciales y
temporales, de modo que si se invierten las coordenadas espaciales, o se
toma el complejo conjugado de la funcién de onda, la funcién de Wigner
también se transforma de manera semejante [4]. Formalmente, esto se
puede ver en la Tabla

Transformacién en v¢(q) | Transformacién en W(q, p)
¥(g) = (g +a) W(q,p) = W(q+a,p)
p(q) — ' Mp(q) W(q,p) = W(g,p—p')
¥(g) = Y(—q) Wi(q,p) = W(-q,-p)
¥(q) = ¥*(q) W(q,p) = Wi(q,—p)

Tabla 1: La funcién de Wigner es una invariante de Galileo, lo que implica
que obedece estas reglas de transformacion.

3.5. Ecuaciéon de movimiento clasica

Una propiedad importante de la funcién de Wigner es su capacidad
para describir la evolucién temporal de un sistema cuédntico en el espa-
cio fase. Para sistemas cuanticos que tienen un potencial no mayor a un
polinomio de segundo orden, como el oscilador arménico cuantico o una
particula bajo la accién de una fuerza constante, la evoluciéon temporal
de la funcién de Wigner, W (q, p.t), coincide con la ecuacién de Liouville
cldsica, fundamental en mecanica estadistica, la cual describe la conser-
vacion de la densidad de probabilidad a lo largo de las trayectorias del
sistema en el espacio fase [4]:

OWla,p) _ _p OWlg.p)  9U(q) OW(q,p)

ot m  0q dq op

(11)

En esta ecuacién, la derivada temporal %, representa la evolu-
cién de la funcién de Wigner en el tiempo. Aunque hasta ahora se ha

10



considerado la funciéon de Wigner independiente de ¢, debe reconocerse
que en general, el estado cuantico de un sistema puede cambiar, y por
lo tanto, la funcién de Wigner también puede depender explicitamente
del tiempo.

Particularmente, para una particula libre, se tiene para el potencial
U(q) = 0. En este caso, la ecuacién de Liouville se simplifica a la ecuacién
de movimiento clésica para la funcién de Wigner [3]:

OW(a.p) . p OW(q.p)
ot m  0q

Aunque, en general, no se tratard con la funcién de Wigner depen-
diente del tiempo, mas que de una manera superficial y en secciones
especificas, hacer mencién de su existencia es importante.

—0. (12)

3.6. No positividad (cuasiprobabilidad)

La funcién de Wigner presenta valores negativos en ciertos casos [3,
4, [7HI], caracteristica que la define formalmente como una distribucién
cuasi-probabilistica [4,[8]. Este comportamiento se manifiesta claramente
al analizar una propiedad fundamental: la traza del producto de dos
operadores de densidad (que representan los estados del sistema).

Esta propiedad consiste en que, en particular, para dos estados puros
ortogonales [11) y |12), con operadores asociados fy, ¥ Py, la traza es
determinada por el producto de sus respectivas funciones de Wigner
integrado sobre el espacio fase [2] B]:

Tr(puy, Pyy) = [(¥1[1h2) > = 27T7i/dq/le(q,p)Ww(q,p)dp- (13)

Aqui, las distribuciones W(q, p) son definidas como en la Ec. (1)). La
no-positividad de la funcién de Wigner puede hacerse notar al observar,
debido a que los estados cuanticos deben cumplir la normalizacién a la
unidad, es decir, [(y|1)]|? = 1, entonces:

o5, SiY =1

. 4
0, si Yy # o 1

/dq/ le(q’p)WwQ(Q»p)dp:{

Es prudente hacer énfasis en el significado de estos resultados: El
primero implica que la concentracién de esta probabilidad no puede ser

11



arbitraria, ya que tiene un valor finito. Esto es debido al principio de in-
certidumbre de Heisenberg, AgAp > h/2; conocer simultdneamente, con
exactitud, los valores de ¢ y p implicaria una violacién a este principio,
pues se tendria AgAp = 0, ademads, la funcién de Wigner obtendria un
valor mayor que ﬁ, en particular, Wy,(¢,p) = 6(¢—qo)d(p—po), lo cual
representa el conocimiento simultaneo, con exactitud, de los valores de
q y p (un punto clasico) [3].

Por su parte, el resultado nulo, implica que W (g, p) no puede ser po-
sitiva en todo punto del espacio fase, ya que, de no ser asi, la funcién no
podria anularse a menos que ¥, = 0 o ¥ = 0, de modo que solamente
una combinacién de valores positivos y negativos de la distribucién de
Wigner podria anular la Ec. [3]. Esto refleja la naturaleza no cldsica
de esta distribucién. No obstante, esto no implica que no existan funcio-
nes de Wigner que puedan ser positivas en cualquier lugar del espacio
fase, por mencionar sélo un ejemplo, los estados coherentes, los cuales se
tratardn con mayor detalle posteriormente.

El lector podria cuestionarse acerca del significado de las regiones
en que W(g,p) < 0 o el motivo de que esto sea asi. Estas son debidas
a la superposicién de estados y la naturaleza no clasica de los estados
cuanticos, a través de reflejar la interferencia destructiva entre los com-
ponentes de la funcién de onda [7, [8, [10]. Esta propiedad permite pensar
una superposicién de estados cudnticos como una superposicién en el
espacio de fases [§].

3.7. Simetria bajo intercambios ¢ = p

Aunque la funcién de Wigner W(q, p), Ec. (1), cominmente se ex-
presa partiendo de la representacién de posicién, es decir, utilizando
eigenestados de posicién, la formulacién de la mecanica cudntica en el
espacio fase, que busca un tratamiento més equiparable (o simétrico)
para las variables de posicién y momento, permite que esta funcién tam-
bién pueda ser obtenida o expresada de manera equivalente utilizando
eigenestados de momento.

La funcion de Wigner se puede expresar en términos de la transfor-
mada de Fourier de la funcién de onda, permitiendo asi, intercambiar
entre representaciones, ya sea en términos de ¥(q) o ¢(p) y sus respec-
tivos conjugados [3]. De esta manera, la Ec. (2)) puede expresarse en
términos del momento como:

1 1 1 .,
W(q,p) = %/é* <p + 229’) ¢ (p — 219’) et /iy (15)

12



4. Estados cuanticos relevantes

Debido a que la funcién de Wigner, W(q,p), permite representar
estados cudnticos en el espacio fase de posiciones y momentos, es una
herramienta muy 1til para visualizar y comprender las propiedades de
distintos estados. Algunos de los maés relevantes, relacionados con la fun-
cién de Wigner, son los estados de Fock, los cuales son elementos clave
para la teorfa cudntica de campos [§] y sirven como un pilar en la cons-
truccion de algunos otros, como los estados coherentes y los estados
comprimidos, como se verd a continuacién.

El andlisis de la funciéon de Wigner para cada uno de estos estados
revela caracteristicas distintivas en el espacio fase, mostrando céomo la
representacién visual puede ayudar a comprender sus propiedades funda-
mentales, su grado de no-clasicidad y la presencia de fenémenos cuanti-
COS.

4.1. Estados de Fock

Un estado de Fock |n) (también conocido como estado de nimero), es
un estado fisico con una cantidad bien definida (n) de fotones (o, en ge-
neral, bosones), en el que las amplitudes de los campos electromagnéticos
no estan bien definidas debido la no conmutacion entre los operadores
de creacién (af) y aniquilacién (a) con el operador de ntimero (N = afa)
[7H9]. Esto es asi ya que, si bien existe un ntimero n de fotones en el
sistema, la aplicacion de alguno de estos dos operadores cambiara esta
cantidad sucesivamente con cada aplicacién.

Para un oscilador de masa unitaria y frecuencia angular w, estos
operadores de creacién y aniquilacién se definen como:

L (wj+ip), 0 = ——(wi— D)
wq +ip), a wq — ip).
vV 2hw vV 2hw
En donde A es la constante de Planck reducida, la cual, aunque se
mostrard explicitamente en las ecuaciones siguientes, para la ejecucién
de los cdédigos que se utilicen, se hard i = 1. Ademas, estos operadores
son no conmutativos entre si, cumpliendo con la relacién:

(16)

&:

[a,af] = 1. (17)

13



La accién que tienen los operadores de creaciéon y aniquilacién sobre
los estados de Fock es [8] [9]:

aflny =vn+1n+1), an)=+nln—1). (18)

Por supuesto, los operadores de posicién (§) y momento (p) (también
conocidos como operadores de cuadratura) pueden escribirse en términos
de los de creacién y aniquilacion, a saber:

qz\/f(aw&), p=i g(af—a). (19)

El estado de vacio, |0), resulta de suma importancia, pues los es-
tados de Fock pueden generarse a partir de este estado base mediante
aplicaciones sucesivas del operador de creacién [8 [10]:

iy = &)
Vn!

La representacién de los estados de Fock, en el espacio de posiciones,
es dada por la funcién de onda [10] I1]:

Yn(z) = \/%n' (%)1/4 H, (\/gx) e (21)

En donde H,(x) son los polinomios de Hermite, los cuales describen
las oscilaciones caracteristicas de los estados de nimero, (Fig. [1f) (notar
que en esta figura se ha tomado w = 1, la cual, en general se tomaré con
ese valor a menos que se indique lo contrario), por otra parte, la Fig.
muestra la densidad de probabilidad |, (¢)|? para algunos valores de n.

En general, la Ec. describe la distribucion espacial de estos es-
tados. Estos son fundamentales para la construccién de otros estados,
como los coherentes, que pueden interpretarse como una superposicién
ponderada de |n).

Los estados de Fock forman una base completa del espacio de Hilbert
asociado a un oscilador armonico cuantico. El espacio de Fock proporcio-
na una base ortonormal fundamental ({(m|n) = d,,) [7], asi, en un sen-
tido fisico, la descripcién cuédntica de un campo electromagnético puede
representarse mediante la expansién del operador de densidad en la base
de estados de Fock, la cual incluye términos diagonales y no diagonales
[7.

10). (20)
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Funcién de onda y,(q) para los estados de Fock

0.8

0.6

S 3 3 3>
1]
w N R o

0.4 1

0.2 4

tn(q)

0.0

—0.2 4

—=0.4 1

—0.6 1

Figura 1: Funcién de onda para los cuatro primeros estados de Fock. Se
ha tomado w =h = 1.

Proyeccion de |g(q)|? sobre g

0.5+

w N o

0.4+

0.3+

lw(q)?

0.2+

0.14

0.0 4

Figura 2: Densidad de probabilidad de la funcién de onda para los pri-
meros cuatro estados de Fock. Se ha tomado w =k = 1.
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Figura 3: Funcion de Wigner para los primeros cuatro estados de Fock
en el espacio fase. Notar que la primera (correspondiente al estado de
vacio) es completamente positiva. Por otra parte, para todas las siguien-
tes se observan patrones anulares debidos a regiones positivas y negativas
equidistantes del origen. Conforme n incrementa, estos “anillos” también
incrementan en cantidad, pero no en magnitud.

La funcién de Wigner asociada a los estados de Fock es tal que [8]:

W) = 2(~1)" Ly (4laf2)e2F" (22)

El hecho de que en esta ecuacién aparezcan polinomios de Lague-
rre, Ln (€ ﬂ es lo que explica las fluctuaciones cuanticas de este tipo de
estados, de manera que existen ciertas regiones en las que W adquiere
valores negativos [§]. La Ec. se puede visualizar graficamente en las

Fig. By [

1Los polinomios de Laguerre se definen mediante la férmula de Rodrigues como:
Ln@) = & o (")
n\T) = 77 gen (L€ .
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Funcién de Wigner para |0) Funcién de Wigner para |1)

Funcién de Wigner para |2) Funcién de Wigner para |3)

Figura 4: Funcién de Wigner para los cuatro primeros estados de Fock.
En esta visién tridimensional puede verse de forma mas clara que el
patrén anular de la figura 2D corresponde a regiones positivas y negativas
de la funcién de Wigner.
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Particularmente, para el estado |0), la funcién de Wigner asociada es
dada por:

2 2
Wo(a) = Ze2lol”,

™

(23)

Es posible notar que esta ultima ecuacién representa una funcion
Gaussianaﬂ (una funcién con la caracteristica forma de campana simétri-
ca y decaimiento exponencial rdpido), la cual coincide con lo que se ob-
serva en las Fig. 3| y @ Los campos fluctuantes en sistemas cudnticos
mantienen una relacién intima con los estados de nimero.

Para el caso del campo electromagnético, es ttil definir un operador
de campo genérico G = ga + g*a' (donde g es una funcién dependiente
de la posicion). Si se considera G como una componente de cualquiera
de los campos (cuantizados) E, B o A, se tendra que [7, B]:

(n|G|n) = 0. (24)

Lo que implicaria que los campos E y B tienen un valor promedio
nulo en un estado de numero, sin embargo, presentan fluctuaciones sig-
nificativas [2, [7]. Dichas fluctuaciones son resultado de las propiedades
cuanticas del sistema.

4.2. FEstados Coherentes

Ya se han mencionado las propiedades de la funcién de Wigner,
W(q,p), y algunas formas alternativas que toma para describir un esta-
do cuantico en el espacio de fases. Ahora, es conveniente profundizar un
poco en los estados coherentes, ya que, a menudo son usados en la 6ptica
cuantica y juegan un papel relevante en la transicién entre la mecénica
cuantica y la clasica, permitiendo una representacién cuasi-probabilisti-
ca del estado en el espacio fase mediante la funcién de Wigner. Ademss,
tenerlos en mente puede facilitar el entendimiento de las propiedades de
esta cuasi-probabilidad sin que luzcan tan abstractas.

Una caracteristica muy importante de los estados coherentes es que
minimizan la relacién de incertidumbre de Heisenberg [8, [0], ademds
cuentan con la propiedad de mantener una fase bien definida durante un

_(z—=b)?
2Matemdticamente, una funcién Gaussiana se define como f(z) = ae” 22
donde a es la altura del pico, b es la posicién del centro y c es la desviacién estandar.
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periodo de tiempo determinado debido a que estan formados por una
cantidad indefinida de fotones, en contraste con los estados de Fock, los
cuales poseen una fase completamente aleatoria [9].

Estos estados pueden describirse como un estado en el que el paquete
de ondas del estado fundamental se ha desplazado en el espacio de fases
(q p). Asi, pueden generarse haciendo uso del operador de desplazamiento
D(a) = eo‘aT_“ @ aplicdndolo sobre el estado de vacio, es decir, el estado
|n) para n igual a cero [3], 8, @} [12], esto es:

la) = D(@)|0) —e‘f"“ZZ \ﬁln (25)

Este operador, ﬁ(oz), desplaza el estado cudntico en una cantidad
y direccién «, de manera implicita, esto indica que a € C. Estas ca-
racteristicas permiten pensarlos como una especie de puente entre la
descripcidn clédsica y cuantica de un sistema.

La accién del operador de desplazamiento sobre los operadores de
creacién y aniquilacién es [§]:

Df(a)aD(a) = a+ o

D (a)a'D(er) =@’ + a 26)

En contraste con los estados de Fock, los cuales se utilizan para re-
presentar sistemas con cantidades discretas de energia, los estados cohe-
rentes, donde las fluctuaciones son mucho maés reducidas, se vuelven una
herramienta muy 1til al tratar de conectar la mecanica cudntica con la
clasica [2].

4.2.1. Construccion de los estados coherentes

Formalmente, un estado coherente |«) se define como un eigenvalor
del operador de aniquilacién, a [3] [7, [10] [12]:
ala) = ala). (27)

En donde o € C describe tanto la amplitud como la fase del estado
coherente [§], en concreto, se tiene que o = Hﬁ = |ale®, por supuesto,
aqui 6 representa la fase.
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Distribucion de probabilidades en la base de Fock para |a)

0.08 {

0.06 4

P(n)

0.04 1

Figura 5: Distribucién de probabilidad de un estado coherente con |a| =
4 en la base de Fock. Es notable que esta distribucion esta centrada cerca
de |a|? = 16.

Los estados coherentes se describen como superposiciones de estados
de ndmero |n) ponderados por una distribucién Poissoniana [7], lo que les
permite representar campos con minima dispersién de cuadraturas (es
decir, AqAp = %, ver Ec. ) y energia fluctuante, lo que los convierte
en los estados cudnticos méas parecidos a las ondas clésicas [2].

Estos estados forman una base sobrecompleta en el espacio de Hil-
bert, lo que significa que, a pesar de que los elementos de la base no
son ortogonales entre si, son suficientes para cubrir el espacio, por lo que
pueden usarse para representar cualquier estado del sistema cudntico [9].

En la Ec. se muestra que estos estados son creados a partir de
aplicar ﬁ(a) al estado |0), de modo que, al desarrollarse, también pueden
expresarse en términos de la base de estados de Fock, |n), [3} 10] de la
siguiente manera:

n

o) = e~ ;3&"”' (28)

Esta representacién para |a) permite ver que el nimero de fotones
en un estado coherente no estd definido de manera precisa (Fig. [5), sino
que fluctia alrededor de un valor promedio. En concreto, al calcular la
varianza, se encuentra que dicho valor es (An)? = |a|? [7,§].
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En la Seccién [£] se menciond que la representacion cudntica de un
campo electromagnético podia expresarse en términos de la base de Fock,
la cual incluye términos diagonales y no diagonales, bien, pues por una
parte, los términos diagonales (n|p|n) indican la probabilidad de que el
campo contenga una cantidad n de fotones, resultando en una represen-
tacion 1util para describir sistemas sin una fase bien definida, es decir,
utiles para representar campos incoherentes (es decir, que no presentan
coherencia) en los cuales los términos no diagonales de p tienden a cero
[9], como pueden ser los sistemas en equilibrio térmico; por ejemplo, la
luz incandescente o la radiacién de cuerpo negro, cuya distribucién de
probabilidad sigue una distribucién de Bose-Einstein y su varianza es
igual al ntmero promedio de fotones (%) [8]. No obstante, los estados
incoherentes no solo pueden representarse con estados de Fock, |n), sino
también con una mezcla estadistica de estados coherentes |«) con una
distribucién Gaussiana, como la que brinda la representacién P(«), tam-
bién conocida como representacién de Glauber-Sudarshan (se hablard de
esto posteriormente, en la Seccién [5.3.1)).

Por otro lado, si los términos no diagonales tienen relevancia, enton-
ces su anélisis resulta indispensable para un estado coherente |a) (donde
o= L\/;;p) ya que, precisamente, los términos (n|p|m), con n # m, con-
tienen la informacién referente a la fase del sistema debido a que un
estado coherente es una superposiciéon de varios estados de nimero, de
manera que |«) tiene una fase bien definida debido a que « tiene una fase
clara [2]. Esta coherencia hace que la representacién de p en términos
de estados de numero sea complicada de trabajar ya que contiene una
cantidad de coeficientes que tiende al infinito [9].

No esta de mas recalcar que, a diferencia de los estados coherentes, los
estados de nimero tienen una fase indeterminada y carecen de términos
no diagonales significativos en la representacién del operador de densidad
p [7. El hecho de que los estados coherentes preserven una fase bien
definida se refleja en la posibilidad de obtener un valor promedio no nulo
para el campo electromagnético [2].

En concreto, al expresar el operador de densidad en la base de niimero
como p = X, mpPnm|n)(m|, se tiene, efectivamente, una matriz, denomi-
nada como matriz de densidad. El hecho de que esta matriz contenga
Unicamente términos diagonales (n = m) resulta en una descripcién
matematica mas sencilla, sin embargo, esto conlleva la pérdida de la
informacién de fase que caracteriza a los estados coherentes [7].
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4.2.2. Valor esperado del campo electromagnético

Como ya se ha mencionado, el campo electromagnético puede repre-
sentarse utilizando estados |n) como base, o también a partir de estados
|a).

Sin embargo, a diferencia de los estados de niimero, los estados cohe-
rentes permiten obtener un valor promedio no nulo para el campo en
un marco cudntico [2, [7]. Adem4s, las fluctuaciones en estos estados son
minimas, lo que explica por qué el comportamiento cuasi-clasico es do-
minante. El valor esperado del campo genérico G (mencionado en la Ec.
(24) en un estado coherente se puede expresar como:

(a|Gla) = ag + a*g* = 2|a|Re(g) cosb. (29)

Prestando atencién, puede notarse que esta ecuacién tiene una forma
semejante a la del campo cldsico, mostrando una oscilaciéon sinusoidal,
lo que permite interpretar los estados coherentes como estados cuanticos
muy cercanos a un comportamiento clésico [§]. Un ejemplo concreto es el
operador de campo eléctrico monomodo polarizado linealmente, E,E(r7 t).
Su valor esperado en un estado coherente muestra explicitamente la es-
tructura de onda clésica:

ol

(@] By (r,t)|a) = 2|a (h’“) sin(wt — k- — 6). (30)
2€0V

Aqui, el término entre paréntesis representa la amplitud de las fluc-
tuaciones de vacio, donde V' corresponde al volumen de cuantizacién,
€o es la permitividad del vacio y k es el vector de onda que indica la
direccién de propagacion con frecuencia w.

Los estados coherentes tienen una representacién muy intuitiva en el
espacio fase, ya que su funciéon de Wigner asociada toma la forma de una
distribucién Gaussiana centrada en el punto (Re(5),Im(8)), en donde
representa al pardmetro del estado coherente en cuestién [§]. A pesar de
oscilar, esta representacion permite ver con mayor facilidad su similitud
con un sentido cldsico de probabilidad.

Ademsés de su capacidad para producir un valor esperado no nulo
del campo electromagnético, los estados coherentes permiten represen-
tar el sistema de forma cuasi-cldsica, entendiendo esto como un compor-
tamiento que se asemeja al limite clasico al presentar una distribucién
de probabilidad positiva y localizada, a través de la funcién de Wigner,
como se ha mencionado anteriormente. En particular, para un estado
coherente |3), dicha funcién es dada por [§]:
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W(a) = 26_2‘0‘_[”2. (31)
T

Aqui « representa el punto en que se evalia la funcién en el es-
pacio fase. Esta funcién siempre es positiva y refleja las caracteristicas
cuasi-clasicas de los estados coherentes, tales como la minimizacion del
principio de incertidumbre de Heisenberg y la ausencia de regiones nega-
tivas en su distribucién, lo cual permite una interpretacién casi directa
como densidad de probabilidad (Fig. @ La similitud de esta ecuacién
con la correspondiente al estado de vacio, Wy(«), Ec. , permite ver
con claridad lo que se explica a través de la Ec. acerca de que un

estado coherente es un estado de vacio desplazado.

Funcién de Wigner para un estado coherente desplazado a (1,1)

Figura 6: Funcién de Wigner para un estado coherente desplazado a (1, 1)
en el espacio fase. Al comparar con la correspondiente para un estado
|0), puede notarse que un estado coherente es, en realidad, un estado de
vacio desplazado.

Debido a que la Ec. tiene un argumento negativo en la exponen-
cial, ésta decaerd, de manera que el valor maximo que puede tomar es
%. Sin embargo, este valor no es tnico, ya que, segun la normalizacién
empleada para W, este maximo puede ser distinto, pero en todos los
casos, la situacion es la misma: La funcién de Wigner no puede tomar
valores arbitrariamente altos.
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En este caso, cuando la funcién adquiere el valor maximo de %, se ha
usado una normalizacién que es comuin cuando se trabaja con estados
coherentes y cuadraturas del campo electromagnético, como en el marco
de la éptica cudntica, en donde A suele expresarse implicitamente. Una
referencia bibliogréfica de ello es [§].

4.2.3. Operadores de cuadratura

No estd de mas, hacer un énfasis breve acerca de lo que significan las
cuadraturas del campo electromagnético, y es que son las componentes
responsables de describir su comportamiento en términos de posicién y
momento (o variables andlogas) en el espacio fase. En el contexto de
la éptica cuantica —rama de la fisica que estudia los fenémenos en los
que la naturaleza cuantica de la luz y su interaccién con la materia
son fundamentales— se suelen usar para describir las fluctuaciones del
campo, como en el caso del estudio del oscilador armoénico.

Si bien es cierto que un fotén no es una particula con una posicion
bien definida, sino una excitacion del campo electromagnético, resulta
conveniente definir estas cuadraturas como un par de operadores que se
encuentren a una distancia angular de 5 entre si y que sean proporcio-
nales a @ y af, pero de manera que estos operadores de cuadratura se

vuelvan adimensionales [§], a saber, estos son los que se han definido en

la Ec. (19):
q:\/g(awa), p=i g(aﬁ—a).

Algunos ejemplos fisicos que coinciden con la descripcién de los es-
tados coherentes son los que se encuentran en la luz laser, en fenémenos
de superfluidez y superconductividad, por lo que su estudio es muy im-
portante en ramas como la Optica cudntica y la teoria de la informacién
[8, 12].

La capacidad de estos estados para preservar la fase y presentar fluc-
tuaciones minimas analogas a las de una onda clésica contrasta con la
naturaleza aleatoria de los estados incoherentes.

Las cuadraturas asociadas a la posicién y el momento en la Ec. se
pueden entender como una manera de visualizar el estado cuantico en el
espacio de fases, en el que la funciéon de Wigner les da una representacién
cuasi-probabilistica. Como ya se ha mencionado, en términos de estas,
un estado coherente se puede expresar como a = % [, lo que
implica que se centra en el punto ((g), (p)).
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Con base en lo anterior, es claro que tanto los estados coherentes
como los estados de nimero constituyen elementos fundamentales para
la representacién de un estado cudntico en el espacio fase. A continuacién
se profundizard un poco maés en las distinciones entre ellos.

4.2.4. Distincion entre estados coherentes e incoherentes

A pesar de que tanto un estado coherente como una mezcla incohe-
rente de estados de nimero con una distribucién de Poisson pueden
presentar un valor de la funcién de correlacién de segundo orden igual
a la unidad, es decir, g?(0) = 1 (definida a continuacién), la diferencia
fundamental radica, precisamente, en la coherencia de fase de los esta-
dos, ya que es esto lo que en verdad permite diferenciar entre un tipo y
otro [9].

Funcién de correlacién ¢2(7).

Es prudente mencionar que g%(0) es una medida de la probabilidad
de encontrar dos fotones en un tiempo determinado en el mismo estado
cuantico del campo electromagnético con respecto a encontrar uno solo.
Esta medida se define como [9]:

atataa n)—mn
92(0): <<d1&>2> :1+V(ﬁ)2 :

).

describe la probabilidad de detec-

(32)

Q>

En donde V(n) = ((a'a)?) — (a

De manera complementaria, g2 (7
tarlos con un tiempo de retardo 7 [§].

Ahora, la Ec. describe la naturaleza del campo de la siguiente
manera [2] [8] []:

~

= Sig?(0) > 1, se trata de un campo con agrupamiento (bunching) en
el que los fotones tienden a llegar en grupo, esto es ¢g%(7) < ¢%(0),
es decir, es mas probable que los fotones se detecten a la par que
de manera separada, como en el caso de un campo térmico. Por
ejemplo, la luz que emite un bombillo.

= Por otro lado, si g?(0) = 1, se tiene un estado coherente en el que
cada fotén se comporta de manera independiente y uniforme sin
agruparse. En tal caso se habla de una distribucién de Poisson,
entonces V' (n) = n. Un ejemplo de esto es la luz laser.
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= Pero si g?(0) < 1, se tratard de un caso en que los fotones tien-
den a llegar de manera individual uno tras otro sin formar grupos
(antibunching), alegebraicamente g*(7) > ¢*(0). Esto es una ca-
racteristica de la naturaleza cuantica del campo electromagnético.
Dicho fenémeno sucede, por ejemplo, en sistemas que emiten un
solo fotén a la vez, los cuales pueden representarse con los estados
de ntmero.

El valor dado por la Ec. no es suficiente para distinguir entre un
tipo de estados u otro, ya que aunque este parametro refleja la distri-
bucién de fotones, no da informacién acerca de la fase, de modo que, a
pesar de que un estado coherente y uno incoherente con distribucién de
Poisson comparten una distribucién de probabilidad similar, el pasar del
tiempo muestra que ese ultimo tendra un comportamiento més aleatorio.

Para diferenciar entre este par de tipos de estados, es necesario rea-
lizar mediciones que consideren la fase del campo, como las cuadraturas
Gy p [9). Un ejemplo es la deteccién homodina, la cual puede estudiarse
en multiples bibliografias, un par de ellas pueden ser [§] y [9].

En un estado coherente, las incertidumbres de estas cuadraturas (Ag
y Ap) resultan ser el valor minimo permitido por la relacién de incer-
tidumbre de Heisenberg. Esto implica que el estado estd maximamente
localizado en el espacio fase, lo cual permite que la fase esté definida con
la mayor precisién que la mecanica cuantica permite, a diferencia de una
mezcla térmica (incoherente) donde la distribucién se dispersa en todas
direcciones, lo que implica la ausencia de una fase bien definida [9].

4.3. Estados Comprimidos

Los estados comprimidos representan una extensién de los estados
coherentes [9], y son fundamentales en la descripcién de sistemas cudnti-
cos donde las fluctuaciones en una cuadratura, como la posiciéon o el
momento, necesitan minimizarse por debajo de las que se asocian con
los estados coherentes. A diferencia de estos tltimos que, como se ha vis-
to, mantienen una incertidumbre que es igual en ambas cuadraturas y
minimizan la relaciéon de incertidumbre de Heisenberg, los estados com-
primidos las redistribuyen entre las cuadraturas de manera que alguna
de ellas puede reducirse por debajo del limite de Heisenberg a costa de
aumentar las fluctuaciones en la cuadratura complementaria para respe-
tar la relacién de incertidumbre AgAp > % [2, @9]. Esto significa que, a
diferencia de los estados coherentes, ((Aq)?) < 2 ¢ ((Ap)?) < L.
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De manera semejante a los estados coherentes, los cuales son estados
de vacio desplazados (a través del operador D(a) = eo“ﬂ_"‘*d), como lo
muestra la Ec. , los estados comprimidos también son generados a
partir de aplicar un operador a otros estados, solo que en este caso no
se aplica al estado fundamental, |0), directamente, sino que, en general,
a un estado coherente, |a). Dicho operador, conocido como operador de
compresion tiene una forma similar a ﬁ(oz), pues es un tipo de “gene-
ralizacién a dos fotones”de este [§]. La razén de esta analogia es que,
mientras b(a) es lineal en los operadores de creacién y aniquilacién, el
exponente del operador de compresién depende cuadraticamente de ellos
(a'? y a?), lo que implica procesos de creacién y aniquilacién de pares.
A saber:

5(€) = exl€a’—€a™) (33)

En donde & = re?? determina el grado de compresién que sufrird el
estado al que se aplique a través de la magnitud r € [0, c0) y en direccién
de 0 € [0,27], es decir, no es forzoso que la compresién se dé a lo largo
de ¢ o de p, sino que puede darse en cualquier direccién del espacio
fase, la cual es determinada por este dltimo parametro y resulta ser una
combinacion lineal de las cuadraturas originales.

A diferencia de ﬁ(a), que actiia creando o destruyendo fotones de
manera individual, $(€) lo hace en pares de fotones correlacionados [§],
lo cual puede observarse en el argumento de la funcién exponencial, que
a diferencia del operador de desplazamiento, contiene 4% y af2.

Para poder analizar como cambian las cuadraturas y propiedades
de los fotones en este tipo de estados, es necesario observar qué sucede
cuando S(€) (y también ST(€) = §-1(¢) = §(—¢)) se aplica sobre los
operadores de creacién y aniquilacién [§]:

ST(€)aS(€) = acoshr — afe sinhr,

) N . (34)
ST(€)aTS(€) = a' coshr — age " sinhr.

El operador de compresién puede aplicarse a un estado general |1))
el cual se transforma en un nuevo estado |ih) = S(€)]1) que mantiene
propiedades de [1)) pero con diferencias en las cuadraturas. Sin embar-
go, también puede aplicarse directamente sobre el estado fundamental,
generando una redistribucién del ruido cudntico, de manera que las fluc-
tuaciones difieran en las cuadraturas, por ejemplo Ag < % y Ap > %
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De esta manera, se puede obtener un estado comprimido mas general
al aplicar D(«) sobre las Ecs. y el estado de vacio, resultando en
[8]:

o, §) = D(a)S(€)]0). (35)

Asi, si € = 0, se obtiene un estado coherente.

De manera semejante a la Ec. , el operador de compresion tam-
bién puede expresarse en términos de estados de Fock [§], sin embargo,
esta expresiéon unicamente involucra términos pares debido a que S (&)
los introduce (o aniquila) en pares. Asi, el estado de vacio comprimido
puede escribirse como [8]:

m=0

Una forma simple de analizar este tipo de estados puede darse al
notar que el operador S(&) reescala la funcién de onda de acuerdo con
[10]:

Ve (q) = e/ *1ho(eq). (37)

Por supuesto, este tipo de estados también tienen asociada una fun-
cién de Wigner. A saber, esta funcién es:

2 P
W(B) = —eap <2X126 2r _ §X22€2 ) . (38)

Donde:

X1 =qcosf+psinf, X;= —qsinf + pcosé.

Un ejemplo de este tipo de estados puede visualizarse en las Fig. [}
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Funcién de Wigner para un estado comprimido

Figura 7: Funciéon de Wigner para un estado comprimido con r = 0,7 y
0 = w. Puede notarse que es completamente positiva y, aunque podria
estar fuera del origen, este ejemplo muestra que es un estado de vacio
comprimido.

4.4. Estados de gato de Schrodinger

Este tipo de estados representan una superposicién coherente de dos
estados macroscépicamente distinguibles [§]. Fueron propuestos origi-
nalmente a partir del experimento mental de Erwin Schrodinger para
ilustrar algunas de las peculiaridades de la mecanica cuantica, especifi-
camente la superposicién y el enredamiento.

Los estados de gato se expresan como una superposicién de dos esta-
dos coherentes |a) v | —a) [6]. Estos también son conocidos como estados
coherentes pares o impares y se diferencian en que para los primeros, la
interferencia es constructiva, mientras que para los impares resulta ser
destructiva, es decir, cumplen con [6]:

Wpar) = la) +[—a) = ¥(q) = Yalq) +¢-alq), (30)
|Wimpar) = ) — | —a) = ¥(q) =vYalq) — ¥-alq)-
No obstante, a partir de ahora, inicamente se considerara el estado

par, y se denotard simplemente como |¥). Algunas de las propiedades de
este estado son la reduccion de fluctuaciones cuadraticas por debajo del
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nivel del vacio y oscilaciones no clésicas en la distribucién del nimero
de fotones [2].

Existe una diferencia entre los estados de gato de Schrédinger y una
mezcla entre estados, como las formadas por |a) y | — ), debido al
fenémeno de superposicién cudntica, presente en los estados de gato de
Schrédinger, y es que, al ser una combinaciéon coherente, dan paso a
fenémenos de interferencia cuantica, de la cual carece una mezcla clasi-
ca entre los estados mencionados. A diferencia de los sistemas clasicos,
en los que las interferencias ocurren entre magnitudes fisicas (como las
ondas electromagnéticas), en los sistemas cudnticos, esta interferencia su-
cede entre amplitudes de probabilidad [7]. Esta puede observarse en su
funciéon de Wigner, en forma de productos cruzados entre sus respectivas
funciones de onda, es decir, los productos 1, ()", (¢) v ¥—a(@)¥}(q)
(ver Apéndice [E.4).

La funcién de Wigner asociada a este tipo de estados es:
Wy (q,p) = Wa(q,p) + W-a(q,p) + Wint(q,p)- (40)
En donde:

ie—%((q—qo)2+(p—po)2) 7

Walq,p) = =

W_a(q,p) = — e 7 ((a+a0)*+@+po)?)

L
mh
2 _1(2,.2 2
Wini(q,p) = e #(747°) cos <\/ﬁ (pA — MQ))

Donde A = L& y ;= 22 Y graficamente puede verse en la Fig.

>
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Funcidén de Wigner para un estado de gato de Schrédinger

Figura 8: En la funcién de Wigner para un estado de gato de Schrodinger
ya se notan algunas regiones negativas, lo cual se debe a las interferencias
existentes entre |a) y | — ).

5. Funcion caracteristica y ordenamiento de
operadores

Antes de abordar la definicién especifica propuesta por Moyal, es
fundamental establecer el contexto matematico que hace necesaria es-
ta discusion. En la mecédnica cuantica del espacio fase, la naturaleza no
conmutativa de los operadores de posicién y momento impide establecer
una correspondencia unica entre las funciones clasicas y los operadores
cuanticos. Como consecuencia, surgen distintas reglas de corresponden-
cia u “ordenamientos” de operadores. En esta seccion se explorara como
cada uno de estos ordenamientos esta intimamente ligado a una funcién
caracteristica especifica y, por ende, da lugar a diferentes distribuciones
de cuasi-probabilidad.

5.1. Funcidén caracteristica de Moyal

En contraste con la mecénica estadistica clasica, en la que las distri-
buciones evolucionan siguiendo leyes deterministas, la mecanica cuantica
involucra la necesidad de una visién maés general, dentro de la cual el for-
malismo clasico queda contenido como un caso particular o limite. José
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Enrique Moyal (1910-1998) precisa que esta necesidad apunta hacia los
procesos estadisticos dindmicos (estocasticos) [13]. Esto se debe a que, en
la mecénica cuantica, la evolucién temporal de las distribuciones de pro-
babilidad no tiene por qué ser determinista debido a la imposibilidad de
definir distribuciones conjuntas de variables dindmicas no conmutativas,
tales como la posicién y el momento.

Moyal argumenta que, aunque la mediciéon simultanea de variables
no conmutativas (como ¢ y p) es imposible, es conceptualmente valido
asociarles distribuciones estadisticas en el espacio fase. De esta manera,
propone que la mecdnica cuantica podria interpretarse directamente co-
mo una teoria estadistica, en la que las distribuciones clasicas pertenecen
a un caso particular de esta [13].

Esta caracteristica sale a relucir en los estados coherentes, cuyas dis-
tribuciones asociadas en el espacio fase son Gaussianas, bien definidas,
y permiten calcular valores esperados de operadores cuanticos de mane-
ra directa. Estos estados son un buen ejemplo de cémo las herramientas
estadisticas pueden ser tiles incluso en sistemas con restricciones cuanti-
cas.

Moyal también propuso que, ademas de la Ec. 7 en donde la funcién
de Wigner se obtiene con una transformada de Fourier de los elementos
de la matriz de densidad p(q,q’), o de la Ec. , que es andloga a
esta pero en términos de p en lugar de ¢, la funcién de Wigner puede
obtenerse a partir de su funcidn caracteristica, la cual describe el estado
p mediante una funcién de dos variables, [3] [13].

Si se considera esta funcién, C(o, 7), como la transformada de Fourier
de W (q,p), es decir:

C(o,7) :Tr[ﬁé(o, )] = /dq/e%(”ﬁm)W(q,p)dp, (41)

entonces se puede obtener la funcién de Wigner como [3]:

2
Wi(g,p) = (27171) /d0/67%(6q+7p)C(0,'r)dT. (42)

A pesar de que la funcién caracteristica de Moyal, Ec. (41]), es una
herramienta poderosa, esta formulacién contiene términos dependientes
de las variables reciprocas de posicién y momento (o,7) (asociadas al
espacio de Fourier), lo cual podria hacer que su interpretacion fisica di-
recta se complique, ya que, precisamente, la idea es lograr visualizar el
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estado de manera similar a como se visualiza una densidad de probabili-
dad clésica, labor que es mds directa a través de las variables (g, p), por
lo que pasar a este espacio se facilita si se hace uso de la transformada
de Fourier, Ec. .

En el contexto de la éptica cudntica, resulta bastante til introducir
la funcién caracteristica en términos de los operadores de creacién, a',
y aniquilacién, a. No obstante, son sensibles al orden con el que sean
aplicados a un sistema, de manera que es menester hacer mencién de los
distintos resultados que se obtienen al usar un orden u otro.

5.2. Ordenamiento de operadores a y a'

Como se menciond en la seccion los operadores @ y a' no con-
mutan entre si, consecuentemente, el orden en que se aplican tiene un
papel fundamental en la mecanica cuantica.

Esta situacién conduce a tener que reconocer varios tipos de ordena-
mientos de operadores, conocidos como el orden normal, el anti-normal
y el orden de Weyl (el cual es simétrico). Esto debido a que, como es
sabido, en la mecénica cudntica, el orden de los factores si altera el pro-
ducto. Esto significa que es posible asociar una funcién cldsica A(q, p)
con un operador fl((j,ﬁ) de diferentes maneras [2], 3] 8, [10] [12]:

= Orden normal (Ordenamiento de Glauber - Sudarshan,
o simplemente P): Los operadores de creacién a' se colocan a
la izquierda, mientras que los de aniquilacién, a a la derecha, sin
olvidar el operador de ntimero (a'aé = 7). Este ordenamiento se
atribuye a Glauber-Sudarshan.

= Orden anti-normal (Ordenamiento de Husimi, o simple-
mente Q): Atribuido a Husimi, en el cual, inversamente al or-
denamiento de Glauber-Sudarshan, los operadores de aniquilacién
se colocarfan a la izquierda, mientras que los de creacién a la
derecha, recordando que, para una funcién de onda 1, se tiene:
aaty = (n+ 1)1,

s Orden simétrico (ordenamiento de Weyl): Promedia de ma-
nera simétrica los operadores ¢ y p, por lo que se tratard con mayor
detalle ya que resulta ser particularmente importante para la fun-
cién de Wigner debido a que evita singularidades que si podrian
aparecer en las anteriores.
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Estos ordenamientos dan lugar a diferentes cuasidistribuciones (P,
@ y W, respectivamente), por lo que debe tenerse especial cuidado al
definir operadores a partir de funciones cldsicas [12].

En la préctica, es 1til obtener la distribucién de probabilidad (o cuasi-
probabilidad, como P, @ o W) mediante una funcidn caracteristica, de-
bido a que una funcién caracteristica contiene toda la informacién nece-
saria sobre el estado cuantico del sistema para reconstruir la funcién de
densidad de probabilidad mediante una transformada de Fourier inver-
sa. Esto es posible ya que, en general, una funcién de densidad p(x) esta
completamente definida si se conocen todos los momentos de la variable
aleatoria x (valor esperado, varianza, asimetria, curtosis, etc.) [8].

5.3. Funcion caracteristica de distintos ordenamien-
tos

Dado que los operadores de creacién y aniquilacién no conmutan,
existen distintas reglas de asociacion que dan lugar a diferentes des-
cripciones estadisticas del mismo estado cuédntico. A continuacién, se
analizan las funciones caracteristicas asociadas a los tres ordenamientos
principales y sus respectivas cuasidistribuciones.

5.3.1. Ordenamiento normal (Glauber-Sudarshan)

Para el caso del ordenamiento normal, la descripcién del operador de
densidad p se realiza en términos de una cuasidistribucién de probabili-
dad expresada como una integral sobre todos los estados coherentes ca-
racterizados por el pardmetro complejo a. Estos estados coherentes |a),
que cumplen la Ec. , permiten construir dicha representacién, cono-
cida como representacidn P(a) o representacién de Glauber-Sudarshan,
denominada asi en honor a los fisicos Roy J. Glauber (1925-2018) y
George Sudarshan (1931-2018):

5= [ Pl@a)(alia. (43)

Aqui, d?a representa las variables de integracién correspondientes a
las partes real e imaginaria de a.

Es posible notar que en la Ec. , P(a) toma un comportamiento
analogo a una funcién de probabilidad clasica, ya que permite ponderar
cada estado en la expansién del operador p.
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Esta cuasidistribucion es 1til para describir sistemas cudnticos que
presentan caracteristicas cuasi-cldsicas (es decir, que admiten una des-
cripcién probabilistica positiva), como los estados coherentes, en los que
toma el valor de una delta de Dirac (reflejando una incertidumbre mini-
ma) o estados de luz térmica, como la de una ldmpara incandescente,
en los que adquiere la forma de una Gaussiana. Para estos estados, esta
representacién toma valores positivos [2] 3 [§].

En general, permite identificar cudndo un sistema se comporta de
forma més clésica (P(«) > 0), en tal caso, los campos cuantizados de este
tipo pueden simularse con una descripcion clédsica tratando la amplitud
compleja de dichos campos como una variable aleatoria estocastica con
probabilidad P [9].

Por el contrario, cuando su comportamiento es el de un sistema pu-
ramente cudntico (donde P(a) < 0 o es singular), como los estados
comprimidos (en los que la incertidumbre de alguna de las cuadraturas,
posicién o momento, se reduce por debajo de los valores del estado de
vacio mientras que la otra aumenta), o los estados de ntmero, en los que
toma una forma que requiere derivadas de una delta de Dirac (esta deri-
vada de ¢ es también llamada distribucion templada o, por su término en
inglés, tempered distribution), la cual es més singular que la propia § [g],
por lo que su interpretacién fisica podria volverse complicada. Debido a
esto, su utilidad para representar este tipo de estados se ve reducida.

A diferencia de la funcién de Wigner, que se asocia con el ordenamien-
to simétrico (o de Weyl), P(«) estd ligada al ordenamiento normal, de
manera que, en términos de una variable n € C, la funcién caracteristica
asociada es:

xn(n) = Tr[ﬁe"’ﬂe_"*d}. (44)

Como se menciond anteriormente, si se aplica una transformada de
Fourier a la funcién caracteristica, puede recuperarse la distribucién.
Para este ordenamiento:

() = / P(a)(ale™ e8| a)d%a,

= /P(a)e"o‘*_"*o‘an. (45)
1

= Pla)=5 [ & xwndn
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5.3.2. Ordenamiento antinormal (Husimi)

Andlogamente a lo anterior, si se hace uso del ordenamiento anti-
normal, es posible obtener la representacidn @ (de Husimi), que es siem-
pre positiva [§], lo cual puede verse en su definicién: Q(«) = %(a\ﬁ\a).
No obstante, a pesar de ser siempre positiva y no tener singularidades,
no puede tomarse como una distribucién de probabilidad clésica, ya que
los estados |a) siguen la incertidumbre de Heisenberg, por lo que tiene
una “anchura minima”, lo cual no permite capturar toda la informacién
cuantica del estado si es que este presenta un comportamiento pura-
mente cuantico, como el “antibunching” o el “squeezing”, o simplemente
presenta efectos no clasicos.

La representacién Q) también es util para representar estados cadticos
y coherentes, aunque es menos precisa que P, ya que como se comentod,
para estos ultimos, P adquiere forma de una delta de Dirac, mientras
que @ lo hace como una Gaussiana suavizada [9], reflejando cierta impre-
cisién en comparacién con la primera, sin embargo, resulta de utilidad
para estados en los que P no existe en un sentido préactico, como los
estados comprimidos, en los que @ adquiere la forma de una Gaussiana
eliptica [g].

Bajo este ordenamiento, la funcién caracteristica adquiere la forma:

Xa(n) = Tr[pe™" 4en]. (46)

Asi, si se aplica un procedimiento similar al utilizado en la Ec.
se obtendra:

Qa) = : / e’ T X a(n)dn. (47)

72
5.3.3. Ordenamiento simétrico (Weyl)

El orden de Weyl, utilizado en la definicién de la funciéon de Wigner,
promedia de manera simétrica las permutaciones de ¢ y p. Por ejemplo,
el producto clasico ¢ - p puede ser convertido en un operador cudntico
simétrico, expresado como A(g, p) = 1(gp+ pq) [8]. En general, si A(g, p)
es una funcién bajo el orden de Weyl, entonces:

A@@:/A@mwwm@@. (48)
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Al ser simétrico con respecto a los operadores @ y a' y no tener
preferencia por uno u otro, el orden de Weyl puede ser visto como un
promedio entre el ordenamiento normal y antinormal.

Para este caso, la funcién caracteristica correspondiente, se define
como:

X(n) = Tr[pD(n)] = Trlpem® —"4). (49)

Las funciones caracteristicas y pueden relacionarse haciendo
uso de la férmula de Baker-Campbell—HausdorﬂEL obteniendo:

12
x(n) = xwe 2" (50)
A pesar de que en la Ec. (50) aparece xn(n), relacionada con la
representacién P, es asociada con el ordenamiento simétrico de los ope-
radores y es un elemento clave para la definicién de la funciéon de Wigner,
de manera que esta puede obtenerse al aplicar la transformada [3], 9], a
saber:

1 N
W(a)=— [ €727 x(n)d*n,
) (51)
= — [ "o xn(m)e 2 d%y.
Vs

Cabe resaltar que tanto C(q,p) (Ec. (41)), como x(n) (Ec. (49)),
describen a la matriz de densidad p, con la diferencia de que lo hacen en
distintas bases. Son como “los dos lados de una misma moneda”.

Mientras que C(o,7) permite representar a W(q,p) en términos de
desplazamientos en el espacio fase a través de las variables conjugadas de
(¢,p), la funcién x(n) lo hace en términos de un promedio simétrico de
estas variables originales (debido a que los operadores a y a' se relacionan
con ellas), es decir, se deriva del ordenamiento simétrico (o de Weyl), con
lo cual se logran evitar singularidades. No obstante, existe una relacién
entre estas dos representaciones, la cual se puede obtener al sustituir los
operadores a y a (Ec. ) en la funcién caracteristica de Moyal (Ec.
(41), de manera que se encontrard la relacién entre la variable n que
aparece en la Ec. . Esto puede verse con mayor detalle en el Apéndice
1D]

3Esta férmula establece que para dos operadores A y B, si el conmutador [A, B]
conmuta con ambos operadores, entonces la exponencial de la suma se factoriza como:

o ot ambbs Ob
A+B _ JA B, —3[AB]
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5.4. Dinamica y dependencia temporal

Hasta ahora se ha hablado acerca de la funcién de Wigner asocia-
da con distintos tipos de estados e incluso distintos ordenamientos de
los operadores @ y a'; sin embargo, esto se ha hecho sin considerar la
dindmica de esta funcién, ya que no se ha introducido algiin parametro
que involucre al tiempo.

Ahora, para tener una perspectiva general de esto, puede considerarse
que, en la Ec. , las funciones de onda son dependientes del tiempo.
Bajo este supuesto, y haciendo uso de la ecuacién de Schrodinger, es
posible mostrar que la derivada temporal de la funcién de Wigner es tal
que [4]:

oW(q,p) OWr +8WU
ot ot ot

_ pW(ap) Jri(fﬁz)s; <1)25 11U (q) ( o >25+1W(q,p).

m  Oq pors (2s+1)! 2 Og?st1 Ap
(52)

Los detalles algebraicos de este resultado pueden revisarse en el Apéndi-
ce [}

Es notable que, en esta dltima ecuacién, el primer término (corres-
pondiente a 6ng) no es dependiente de /i, mientras que el segundo (co-

rrespondiente a 8??) si. Esto puede interpretarse como que el primero
representa la contribucién de la energia cinética, a través del movimien-
to de la funcién de Wigner en el espacio de posiciones, mientras que el

segundo se asocia con las correcciones cudnticas.

5.4.1. Ejemplo: Oscilador Armdnico

Como es sabido, el oscilador armdnico es ampliamente utilizado para
modelar sistemas tanto clasicos como cudnticos. En el caso cudntico, se
describe por un potencial cuadratico de la forma U(q) = %mw2q2. Esta
caracteristica matematica implica que, debido a que el potencial es un
polinomio de segundo orden, todas las derivadas de orden superior a dos
que aparecen en la suma de la Ec. son nulas.

En consecuencia, todos los términos de correccién cuédntica (los que
dependen de potencias de i) desaparecen. Esto significa que, para el osci-

lador armoénico, la funcién de Wigner evoluciona siguiendo exactamente
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la ecuacién de Liouville clasica, sin dispersién cudntica. Fisicamente, esto
implica que la distribucién de probabilidad en el espacio fase simplemen-
te “fluye” siguiendo las trayectorias cldsicas de las particulas.

La funcién de Wigner inicial W (g, p,0) puede construirse a partir de
los estados propios |n), como se definié en la Ec. :

W) = 20" L (a2

En donde o = (g +1p)/+/2. Dado que la evolucién es clasica, la forma
de la distribucién se preserva y simplemente experimenta una rotacién
en el espacio fase con frecuencia angular w. Las trayectorias cldsicas que
dictan esta rotacién estan dadas por [4]:

p .
— s(wt) — =5 t ,
qo = g cos(wt) i sin(wt)

po = pcos(wt) + mwq sin(wt).

Asi, para un oscilador de masa unitaria y frcuencia w = 1, la funcién
de Wigner asociada serd [4]:

W(g,p,t) = W (g cos(t) — psin(t), pcos(t) +¢sin(t),0)  (53)
Este resultado muestra que, para potenciales cuadraticos, la “nube”

de probabilidad orbita el origen del espacio fase igual que lo haria un
sistema cldsico.
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6. Conexion entre la mecanica cuantica y
clasica

Como se mencioné en la seccion es valido asociar distribuciones
estadisticas a observables que, en general, son no conmutativas entre si,
de manera que, por ejemplo, una funcién G(r, s), en la que las variables
r y s no conmutan, puede asociarse a un operador simétricamente orde-
nado, en el que su valor esperado serd tal que (G(r,s)) = (Y|G(F, §)|)
[13].

En el caso especifico de una funcién cldsica A(q,p), definida en el
espacio fase, también es posible asociar un operador cuantico A(q7 D), &
través de la transformada de Weyl [4], la cual también utiliza una repre-
sentacion simétricamente ordenada, como puede notarse en su definicién:

Alg,p) = /<q +

Esta transformada mapea funciones clésicas en el espacio fase a ope-
radores cuanticos y viceversa, lo cual puede ser ttil para ver una conexién
entre la mecdnica cuantica y la mecanica clasica. Ademas, cuenta con
una propiedad importante, y es que, si se tienen dos funciones clasicas
A(g,p) v Bl(g,p) asociadas a los operadores A y B, respectivamente,
entonces [3]:

A
ZAlg —
D) q

%> ey, (54)

Tr[AB] = / / (¢.p)B(q,p)dp. (55)

Se observa que se recupera la propiedad de la Ec. a través de
la Ec. si se toma cierta definicién para las funciones, por ejemplo
A=pyB=10.

Por otra parte, si A(g, p) continia siendo una funcién cldsica definida
en el espacio fase y B= 0, entonces, para un sistema que sea descrito por
la distribucién de probabilidad W (g, p) (asociada a la matriz de densidad
p), el valor esperado de la funcién A es tal que [3]:

(A) = Tr[pd] = / dg / W (g, p) Alq, p)dp. (56)

La forma algebraica de este valor esperado puede obtenerse natural-
mente, sin requerir el uso de la funcién caracteristica de Moyal [1], a
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partir de colocar de manera estratégica tres veces el operador I , (usando
la identidad (g|p) = \/;Theiqp/h) dentro de Tr[pA] = [(q1|pAlq1)dg: y
realizar un cambio de variable definido por las diferencias de posiciones
y momentos iniciales y finales [1].

En la Ec. , es posible observar una analogia con el promedio de
una cantidad fisica representada por A(q,p) y distribucién de probabili-
dad W(q, p).

La funcién de Wigner (Ec. () se encuentra definida en eigenestados
de posicién; no obstante, en la formulacién de la mecdnica cuantica del
espacio fase existe cierta simetria en W(q,p) (y también en A(q,p)),
de modo que es posible expresar cualquiera de las dos en términos de
eigenestados, ya sean de posicion o momento.

Es prudente mencionar que no basta con que W(q,p) cumpla con
las propiedades descritas anteriormente (en la Seccién [3) sino que dicha
funcién también debe corresponder a un operador de densidad vélido
en la mecanica cudntica, es decir, que p = pf, Tr[p] = 1 y que sus
eigenvalores \; € [0, 1].

De la revisién previa, es notable que el uso de la traza de los ope-
radores es bastante util, de modo que, como se mencioné en la Seccién
a través de ella, y el operador W (q, p) (Ec. ), puede obtenerse la
funcién de Wigner asociada a un operador que no necesariamente sea p
[1]. Por ejemplo, para A(q,p):

W4(g,p) = Tr[AW (g, p)]. (57)

En cambio, si se trata de p:

W(g,p) =Tr [%W(q,p)} : (58)

Para las 1ltimas dos ecuaciones se observa que si 2rhA = p, estas se
igualan.

6.1. El Limite Cuantico-Clasico

Una condicién que, mas que deseable, es menester para observar una
conexién entre las teorias cldsica y cuantica de la mecéanica es que en
el limite cuando i — 0, la funcién de Wigner W(q, p) se asemeje a una
verdadera distribucién de probabilidades en el espacio fase, ya que esto
reflejaria el comportamiento clasico del sistema.
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Si se revisa la Ec. (52)), el segundo sumando tiene una dependencia
directa de h, mientras que el primero no, asi, en el limite en que 7 — 0,
los términos del segundo sumando se anulan y se recupera la ecuacién de

Liouville clasica, la cual describe la evolucion temporal de la densidad
de probabilidad de un sistema clasico (Ec. (12)).

Wla.p) _ OWr Wy

ot ot ot

OW(q,p) _ OWr oWy

ot ot ot
P Wn) NN e (1) (9
- m g +§( ) (2s+ 1)1\ 2 Dg2s+1 ap Wi(q,p).
. (OW(g,p)\ _  p OW(g,p)
- %fi)(at = Tm o (59)

7. Conclusiones

En este trabajo se ha explorado la formulacién de la mecéanica cuanti-
ca en el espacio fase a través de la funcién de Wigner, evidenciando que
esta herramienta constituye mucho més que una simple curiosidad ma-
tematica ya que representa un puente conceptual entre el formalismo
abstracto de operadores y la intuicién geométrica de la mecénica clasi-
ca. Si bien la funcién de Wigner logra una descripcién conjunta de la
posicién y el momento, superando la restricciéon habitual de elegir una
lnica representacién, su naturaleza de cuasi-probabilidad surge como
consecuencia del principio de incertidumbre de Heisenberg. A diferencia
de las densidades clésicas, la funcion de Wigner puede adquirir valores
negativos en regiones donde la interferencia cuantica es dominante. Este
comportamiento, aunque podria pensarse como una inconsistencia, en
realidad es un indicativo de la naturaleza no clasica de un estado, como
se observé detalladamente en los estados de Fock y los estados de gato
de Schrodinger.

El anélisis de los distintos estados fisicos revel6 un panorama con-
trastante en el espacio fase. Por un lado, los estados coherentes y los
estados comprimidos exhiben funciones de Wigner positivas y localiza-
das que minimizan la relacién de incertidumbre, comportandose como
los andlogos mas cercanos a las particulas clasicas. Por otro lado, los
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estados de nimero y las superposiciones macroscopicas revelan estruc-
turas oscilatorias complejas y regiones negativas que imposibilitan una
interpretacién probabilistica clasica directa, confirmando que la funcién
de Wigner puede fungir como un detector de la coherencia y las correla-
ciones cuanticas.

También se establecié la conexion fundamental entre las distribucio-
nes de cuasi-probabilidad y el ordenamiento de operadores. En particu-
lar, la funcién de Wigner es la representacién asociada al ordenamien-
to simétrico (o de Weyl), distinguiéndose de las representaciones P de
Glauber-Sudarshan (orden normal) y @ de Husimi (orden antinormal).
Esta correspondencia enfatiza que la elecciéon de una distribucién en el
espacio fase no es arbitraria, sino que dicta las reglas de calculo pa-
ra los valores esperados de los observables fisicos y la aplicacién de los
operadores.

Finalmente, el estudio de la dindmica y la evoluciéon temporal re-
afirmé la consistencia del formalismo. Para sistemas con potenciales
cuadraticos, como el oscilador armonico, la evolucién de la funcién de
Wigner sigue exactamente la ecuacién de Liouville clésica, preservan-
do la forma de la distribucién a lo largo de las trayectorias del espacio
fase. Ademads, se mostré que en el limite & — 0, las correcciones cuanti-
cas se desvanecen, recuperando la descripcion estadistica de la mecanica
clasica. Esto lleva a notar que la funcién de Wigner es una herramienta
muy poderosa para visualizar fenémenos cudnticos de una manera intui-
tiva, mediante la posibilidad de analizar la transicién clasico-cudntica y
comprender la estructura de la informacién en el espacio fase.

43



Apéndices:
A. Relacién entre W(q,p) y ﬁq,p

En la seccién [2.1] se ha mencionado que:
W (g, p) = 4rll, .
Pero, jcémo es que surge esta relacién? Pues, si se considera que [I]:

W(g,p) =Tr {szhW(qvp)] :

Entonces, para un estado puro p = |¢) (|, se tendra:

Wia.) =T [ .00 = gm0 ).

Ahora, usando el hecho de que Tr {|¢)<1/)|C’} = (¢|C|tp), entonces:

W= o W ()

Por otra parte, en términos del operador de paridad desplazado ﬂq,p:
se tiene:

2 N
Wi(q,p) = ﬁ@/’mqw

Al igualar estas expresiones se llega a:

).

1 N 2 -

(WIW (g, p) ) = 4m([I, ,]0). (60)
—  Wi(gp) = 47r12[q_,p.

B. Operadores de Bopp
Es posible utilizar representaciones algebraicas del operador de Wig-
ner, mencionado en la seccién [bl que podrian simplificar los calculos.

Una de las herramientas mas ttiles para ello son los Operadores de Bopp
—nombrados asi en honor al fisico aleman Fritz Bopp (1909-1987)— los
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cuales permiten expresar la funcién de Wigner asociada a una funcién
clésica A(q,p) sin necesidad de recurrir a una representacién integral.

Estos operadores sustituyen las variables cuanticas ¢ y p de la si-
guiente manera:

7 — —lﬁfa p — —l—léfa (61)
7 \135ap) P7\PT2708¢)"
Los cuales conducen a una expresion resultante para /1((}, p) tal que:
- 1h 0 1h 0
W; —A(g-2Z p+r-o= )1 2
i(a,p) <q X TRARY 6q> (62)

En donde los operadores de Bopp actian, primero, entre si, y poste-
riormente sobre el nimero 1 [I].

C. Convenciones para W(q,p)

En la literatura existen diversas convenciones para la definicién de
la funcion de Wigner, las cuales son utilizadas a conveniencia segin el
contexto en el que se apliquen. A continuacién se mencionan algunas de
las que son mencionadas por algunos de los autores de las referencias
bibliogréficas del presente texto.

= La definicién principal (la que se ha priorizado en este trabajo), es
decir, la Ec. (1)):

W(q,p)=/<q+;y

es, también, utilizada por autores como Ben Benjamin [1] y Wolf-
gang Schleich [2].

LA _1 —ipy/hg

Algunas de las convenciones utilizadas varfan tnicamente en el sen-
tido de la normalizacién, por ejemplo:

= W. Case [4] utiliza la convencién:

Wi(q,p) = %/w (m + ;y) P~ (x — ;y> e_ipy/hdy. (63)
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Otros autores difieren en el signo que se utiliza en el argumento de la
funcién exponencial en la definicién de la transformada de Fourier que
se ha utilizado:

= C. Gerry y P. Knight [§] utilizan:

1 p 1 ipz/h
11% = g e e e ) 4
(¢:p) /<q+ 2x‘2wh‘q 2x>e dx (64)

O también pueden variar en los puntos en que se evalia la funcién,
de manera que:

= Los autores de la referencia [3] utilizan:

1 A 12p1,
Wia,p) = — /<q — ylplg + y)e*rv/Mdy. (65)

» Luis de la Pena [7] usa:

1 )
W(z,p) = - /(x + z|plz — 2)e 2P/ R, (66)

D. Relacion entre las funciones caracteristi-
cas C(o,7) y x(n)-

Una funcién caracteristica codifica la descripcién completa de un
estado cuantico, tal como lo hace la matriz de densidad p. Por lo tanto,
son representaciones equivalentes que preservan la misma informacién
fisica. En este caso particular, se tiene la funcién caracteristica de Moyal

(Ee. (@)):

C(o,7) = Tr[pC(0,T)] :/dq/e%(gq+Tp)W(q,p)dp~

En donde se tiene C(o,7) = e#(?9+7P) v la funcién caracteristica
asociada al ordenamiento simétrico de los operadores de creacién y ani-

quilacién (Ec. [49):
~ nat—=n*a
x(n) = Trlpe™ " “].
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La primera representa al estado en el espacio de las variables con-
jugadas de la posicién y el momento (o, 7), mientras que la segunda lo
hace a través de una relacién con los operadores @ y af. No obstante, el
argumento de las funciones exponenciales de cada una de estas funciones
caracteristicas, es decir:

i P
ﬁ(0q+7p) y mna' —n*a,

sugiere una conexién entre las variables (o, 7) y 1. De manera que, si
se definen 1 y * como:

L (—r+i0), 7= —— (=1 —i0)
= —— (-7 +1i0), = — (-7 —10),
"= e N T

se puede llegar a que (0d + 7p) = nat —n*a, y por lo tanto:

E. Calculo de las funciones de Wigner para
distintos estados

E.1. Estados de Fock

Aqui se muestran con mayor detalle dos formas para obtener la fun-
cién de Wigner para los estados de Fock (Ec. . Una corresponde al
uso de la funcién de onda para estos estados (Ec. , mientras que la
otra se realiza usando el operador de desplazamiento.

E.1.1. Usando la funcion de onda

Considerando la funcién de onda para estos estados (Ec. :

1 1\ e 2
n(z) = — | —=z)e .
i) = 7 () (G7)
En esta expresién, H,(£) denota los polinomios de Hermite de
n-ésimo ordenf]

. . . 2 4qn 2
4Los polinomios de Hermite se definen como: Hy,(z) = (—1)"e® #e"’ .
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En la definicién de la funcién de Wigner, [T}

W(q,p)=/<q+ 1y ﬁ

En donde p = |n)(n|, entonces se tendra:

)

1 .
2y> e*wy/ﬁdy

1 .
q- 2y> e Pv/hdy.

1 1
Wi(q,p) = Py <q+ 2V

El bracket sera:

)

!
q 22!

Con este resultado para W, (¢,p) y tomando en cuenta que para
n = 0, los polinomios de Hermite son Hy(z) = 1, entonces:

Wola.p) = zwh/\ﬁ HO) iy
2jrh( m) (2vheH () (68)
_ L i),
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Ahora, para n = 1 se tiene que H;(x) = 2z, entonces la Ec. @ dard:

mion =g [ 3 () (G (4 9)

= W (2\/7?hq2e_%(q2+p2) 4 m(2p2 + h)e_%(qz"'i’z)) '

-1

— (=20 + 1)) e w7 +77) (69)

- Wl(qvp) =

De manera semejante, para n = 2, dado que Ha(r) = 42% — 2, enton-
ces:

Wal(g,p) = % é (\/%h) (jﬁ (a+ %)2 —2) x
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1 (2 —4¢*)*  2(y—29)% 2(y+29)*
_16(7#1)3/2/( - +4>

e F (q2+%) e dy

1
~16(7h)3/2
Las cuatro integrales que deben resolverse dan como resultado:

p2 42 4 2 2274 2 25 hQ
11_86;ﬁ<(p +4¢%) (22? +a*)h+3 >

(I + 1o+ I3+ I4) .

2 2
= =8 [T (2 a4 )

P2 ’12
I, =8e™ % vV h.

Por lo tanto, al sustituirlas, se obtiene:

1 16 ™ 1(,.,2 2
= o () & (20" + 20" + 4% — dgPh— dpPh + ) e H () )
16(7rh)3/2<h\/;(q+p+qp q p°h+h%)e

1 1
= Wa(q,p) = %6_%((12-’_1)2) (hQ <2q4 +2p* + 4¢%p* — 4¢°h — 4P’ R + h2)) .

De esta ltima expresién puede notarse que aparecen los polinomios
de Laguerre con argumento igual a %(q2 + p?), entonces:

Wa(g,p) = %e_%(qzﬂ’z)b (;(QQ +p2)> : (70)

Siguiendo con esto, la funcion de Wigner para el n-ésimo estado de
Fock puede escribirse como:

Wy(g.p) = D" k), (;(92 +p2)) : (71)
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E.1.2. Usando el operador de desplazamiento D(n)

Como se mencion6 anteriormente, también puede obtenerse la funcién
de Wigner para los estados de Fock haciendo uso del operador D(n).
Partiendo de la definicién para W(«) dada en la Ec. y recordando

que x(1) = Tr[pD(n)] = Tr[pem ~74];

1 1

Wia) = = [ e smaty = = [ e b)),

Para el caso en que [¢p) = |n), y usando la férmula Baker-Campbell-
Hausdorff se tendra que:

(D)) = e~ 21 (n]ena’=n"d ).

Si se expanden las exponenciales en una serie de potencias:

= m!
R 11 e 1 \YM (kY]
= D) =" S SR o)

Por ortogonalidad, esta ecuacién es no nula tinicamente cuando se
tiene m = [, por lo tanto:

— (D)) = e~ S DT Gym

= (m!)2
=i S )
m=0

Pero:
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0, sin<m

~t\ymaam —
(nl(@y"a ) {(n%’ e

Por lo que se puede utilizar el coeficiente binomial, definido como

C(n,m) = () = (n#'),m,, entonces:

e 2\m
: i N SE)™
n|D(n)n) = e~z —_—
(| D (o)) S IR (),
m=0
sin embargo, esto puede simplificarse mas si se observa que ahora se
puede escribir en términos de los polinomios de Laguerre:

=5 ()

m=0

= (n|D(n)[n) = e EM L, (|n|?).

De manera que la funcién de Wigner se puede calcular como:

1 . .
Wie) = 25 [ oo e L ) (72)
T
Ahora, si se considera n = w = ¥ —i%, entonces d’n = %d:cdy

y, ademads, n*a — na* = i(Ax + py), donde a = A + i, por lo que:

1 N g —Li(22 2 2 2
Wi (a) = e /ez)\xewye é( T4 )Ln (Z + y4) dzdy. (73)

Asi, para n =0, Lo(z) = 1 y por lo tanto:

1 e — 22 iy 2
Wola) = — [ ePe " 8dx | e s dy

= 4x?

- L (2v2re2) (2v2me")

T 42
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2 2
— Wy(a) = ;e—zla\ . (74)

Ahora, si se quiere obtener W (g, p), podria tomarse a = %(q + ip)
y se obtendria:

2 2 2
Wo(a) = ;e—@ ), (75)

Cabe mencionar que, esta ecuacién difiere con la Ec. debido a
que, en este contexto se usa una normalizacién distinta (mds util en el
contexto de la dptica cudntica) y se usa la convencién de h = 1, sin
embargo, ambas son representaciones validas para W (q, p).

Paran =1, Li(x) = 1 — 22, por lo que se obtiene:

1 X S N 2 2
Wo(o) = 4771_2/6”‘””6”*% 2( Tt ) <1 — <Z + y4)> dxdy
1

= 4771_2(11 + IQ + 13)

En donde la primer integral es:

I :/ei’\”e_%dx/ei“ye_%dy
= (2\/2776_%2) (2\/277'6_2“2)

I = Sme—2lol”,

La segunda sera:
I, = 71/ 261’\$G*Td:v/el’*ye’%dy

- —i (8\/56*”2(1 - 4)\2)> (2\/%6*2#2)

I = —8me 2" (1 — 4\2).
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Finalmente, de manera andloga a I, la tercera resultaré:
Is = —87re_2“2(1 — 4p?)

Sumando las tres integrales, y simplificando términos, la funcién
W1 () serd tal que:

2 2
Wi(a) = = =2 (1 - 4jaf?).

2 2, 2
Wi(g,p) = ——e” @D (1-2(¢* +p%)). (76)

De manera semejante, para n = 2, el polinomio de Laguerre es
2
Ly(|af?) = 5 ((Ja]?)? — 4|a|? + 2) y como |af* = % + ¥, entonces:

— 4= te -5 +1.

L 2?2 224 22y 2t 2?2 g2
4 4 32 16 32 2 2

Por lo que, al sustituir esto en la Ec. deberén resolverse 6 integra-
les. Una vez resueltas, sumadas y simplificando términos, se encuentra
que:

2 2
Wala) = ;6*2@' (8O +2X\% 02 + pt) — 8(N2 + %) + 1)

Estos tres resultados (para n = 0, 1,2) también pueden relacionarse
con los polinomios de Laguerre si se nota que, a diferencia de la ecuacién
el argumento debe ser 4|a|? = 2(¢? + p?), es decir, para este caso:

2 2
Wa(a) = ;e*ﬂal Ly (4]af?).

2 2, 2
Wal(q,p) = e @+, (2((]2 +7%). (77)

Sucesivamente, para el n-ésimo estado se tendra que:

Wi(a) = 2(=1)"e20 L (4]af?).

Wala,p) = 2(-1)"e" L, (247 +57)) (78)
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E.2. Estados Coherentes

En esta seccién se presenta con mayor detalle el procedimiento co-
rrespondiente al calculo de la funcién de Wigner para estados coherentes.

E.2.1. Usando la funcién x(n)

Como se menciond en la seccién [5.2] es 1itil obtener una funcién de
cuasiprobabilidad haciendo uso de la funcién caracteristica; recordando
que para el caso particular de la funcién de Wigner, esta funcic’)p esta
relacionada con el ordenamiento simétrico de los operadores a y at (Ec.

51):

1 o 1 e
W(a) = */e" amn Ny (n)d®n = ;/e" e ezl () d®n.

2

Pero, en una base de estados coherentes |3), la cual, aunque sus
elementos no son ortogonales, es una base sobrecompleta, y por lo tanto
[18){B]d?*B =1, entonces:

JTPS AT * o ow
xn () = Trlpe"™ e = (Ble" e~ ¢|B) = " 0
De manera que, al sustiuirlo en la definicién dada en la ecuacién

previa:

W(a) = i e a—na’ Bt —n*B ,—gn|* d*n

7/677 (a=B)=n(a" =)=} g2,

Existe una identidad para la resolucion de una integral Gaussiana de
este tipo, mencionada en la Ref. [9]:

ul

w, 2 T =z
/en$+n y—z|n| d277 = Ze

I\

Si se identifica que:

r=a=f, y=—("=p7), z=g,
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entonces, al simplificar, se obtiene como resultado la ecuacién 31}

2
W(a) = ;6_2‘0‘_[”2.

E.2.2. Usando la funcion de onda

Ahora se mostraran los célculos realizados para W, usando la defi-
nicién de la Ec. , a saber:

W(q,p)—/<q+;y

En la que se usara la funcién de onda de los estados coherentes dada
por:

27h 2

1 .
q- y> an

1 e — = (z— ea2i £Im(a)x
bale) = (7)o R s

Considerando o = A + iy, y p = |8)(B], entonces:

W(q,p) = % /wa (a+ %) s (a=b)emmay,  (s1)

el producto ¥ (¢+ %) % (¢ — %) del integrando es (haciendo A =

Yo (q+g Vo (q—y) =
- \/Ze— ((a+)-v/EN) +iv2an(ar) =2 (- 4)-vVEN) =2 an(a- )
' (52)

)

pero el argumento de las exponenciales puede simplificarse:

-4 ((qﬁé) —\/Z)\>2+i\/ﬂu(q+g)

L (R )
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2 / 2\
:—A<q2+i—2 Aq)\+>+zv Apy,

por lo tanto, la integral puede escribirse como:

2, 2 222 i i
Wal(g, p) 27rh/ /4 + -2/ G+ )Hmﬂye*%dy.

Al resolverse se llega a:

Wa(q,p)zi,/é 9, | T e~ AP H2VIAA (N 4% )~ i 42/ F B
2rh V' A

nuevamente, el argumento de la funcién exponencial puede simplifi-
carse:

2
2

2
Ao iA) i (1= V)

Por lo que, si se hacen ¢y = \/gk y po = V2Auh, como A = %,

entonces:

Wal(q,p) = ie*%((qfqo)2+(pfpo)2). (83)

mh

E.3. Estados Comprimidos

Ahora es turno de mostrar el desarrollo para calcular la funcién de
Wigner asociada a los estados comprimidos, los cuales, como se mencioné
en la seccion son generados a partir de aplicar el operador S (¢) aun
estado de vacio.

Recordando que:

1 o
Wia)= = [ere s,

}Entonces, para p = [€)(&] se tendréf, para este caso, que xe(n) =
(E[Dm)IE), pero [€) = §(£)[0), y como §(¢) = ¢2(€"# =€) entonces la

funcién caracteristica quedard como:
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xe(n) = (0157 (€) D(m)S(€)[0) = (0 5H (&)™ ~73(£)[0).

Pero la accién de S(¢) y ST(€) sobre los operadores de creacién y
aniquilacién es dada por la Ec. (34), por lo tanto:

— en(éj cosh r—ae ™% sinh r) —-n* (d coshr—ate® sinh r)

— ensd‘h*ngfl’
en donde n¢(n) = ncoshr + n*e" sinh r, de manera que:

Xe(n) = (0]ems® ~En|0) = e~ 31mel”

_ 67%(|n|2cosh(2r)+%(n2e_i9+(n*)2ei9)sinh(2r)).
Asi, sim = A+ iu, « = x + iy y se elige el caso en el que § = 0,
entonces esta funciéon puede simplificarse a:

X§(77) —e 2|77|2cosh(27")7—(n e 4 (n*)%e ’e)smh(Zr)

_ e—%(xzﬂﬁ) cosh(2r)— 4 (A% —p?) sinh(2r)

_ 67%()\2627"4»#26727") .
Por otra parte, se tiene que n*a — na* = i2(A\y — px), entonces la
funciéon de Wigner se calcula como:

1 1 = 1 - _op
W(a) = & [0t (et g,
= %/eu/\ye—%xzezrd)\/ _lzuxe_5“25727du
0
L —r—2e” r—2e2" 2
= 5 (e Vam) (e Van).
2 _2(627‘m2_8727,y2)

™

Aqui se ha presentado un desarrollo algebraico para obtener la fun-
cién We(a), sin embargo, existe una forma mds simple de llegar a este
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resultado, el cual es a través de considerar que el operador S (€) rees-
cala la funcién de onda de acuerdo con 1¢(q) = €¥/24y(efq) (Ec. ,
entonces, para la definiciéon dada en la Ec. se tendra que:

g P gt

1 1 _
— - _ = —ipy/h
We(q,p) / <q +3y|S5 +5"a 2y> e dy

1 1 1 ,
3 z Elg— = £e—ipy/h g
2mwh <6 <q+ 2y) c (q 2y) > e v-

Es decir: We(q,p) = Wo(eSq,e *p), con lo que, usando el resultado
de la ecuacién B3 se tendra:

p

2 (2602 L2682
We(q,p) = e~ (50 +<50"), (85)

E.4. Estados de Gato de Schrodinger

Finalmente, llega el turno de calcular la funcién de Wigner asociada
a los estados del tipo de gato de Schriédinger. Para esto es conveniente
recordar la funcién de onda de un estado coherente coherente |a), asf,
nuevamente haciendo A = %:

2\ 1/4 2 R
T

Mientras que para el caso en que el estado sea | — a) se tendra:

2\ 1/4 2 2
$oalg) = (Ah) o4 (a+3)"-idng
i

Ahora, este tipo de estados, los cuales se denotardn como |¥), tienen
la particularidad de que:

W) = a) + [ —a) = ¥(q) = Yalq) + ¥-alq)-

De esta manera, su funciéon de Wigner asociada serd tal que:
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Wy (q,p) = ﬁ v (q + %) v (q - g) e Pihdy.

Por lo tanto, en el integrando apareceran las funciones de onda:

=t (a+5)vi (a=5) +va (a+5) vra (- %)
o (arg)vn(og) roa o) via(o-3)

— watan = g4 [ (v o 3) i (o= §)on (5 )0

e (1 )0 (o= ) o (04 ) v (4 ) et

De esta relacion puede identificarse que, para los sumandos que con-
tienen los subindices o y —a se obtienen directamente las funciones de
Wigner:

I o—ipy/h
W Mi/wa q+ ( 2)e dy ©
— e #((a=a0)*+(p—p0)® )’
7Tﬁ
1 * —1
Weala,p) = 5+ /wfa (q+ %) (CHN (q - %) e /My -
87
_ 1 (@t @ip0)?)
wh

Mientras que los dos sumandos restantes (los términos cruzados) se
pueden identificar con la interferencia cuantica particular de los estados
del tipo de gato de Schrodinger, asi, su funcion de Wigner asociada sera:
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Wing = glh/ (% <q+ %) ¥r, (q - %)
+_a (q + %) va (q - %) )e‘ipy/hdy.

El producto de las funciones de onda del primer sumando es:

Vo (q + %) v* (q — y) A A ((a+)-2) HiAu(ary)

Ahora, dado que Wi,¢(q,p) estd conformada por una suma de dos
productos de funciones de onda, entonces se tendran 2 integrales que
resolver, las cuales seran:

Wl’ntl (q p 2 h /wa q + ) q— ) €7ipy/hdy

oA (P (5=2)7) izaua-pu/n) g,

5|
= 5 () (B ) (Gt

_ ie*<‘42q2+(ﬁ) +i( 55— Auq))

7h

(83)

)
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y para la segunda integral:

Wint, (4, D) / w q-— )e*”’y/hdy

/ A2 q + U % ) 72(2A,uq+py/h)d

:271%( )( ) ()7 4420 ~i2( 5~ Apa))
1

_ L (a2 () -i(Br - Ana))

7rh

Entonces, al sumar estos resultados se obtiene que:

1 — r_\? . P
Wint1 (q’p) + Wintg (q7p) = ?ﬁe (A2q2+(Ah) ) ( 712(An A/MJ) + ezQ(TZ*AMQ)) )

pero como e 4 e~ = 2cos z, entonces esto se simplifica a:

Wint(Q7p) W (q p) + Wzntg( p)
2
™

o (PP (F)7) cos (2 (512 —Auq>), (90)

por lo que, si se recuerda que A = ﬁ, qo = % v po = Aph, entonces

Wint(q,p) = %6_%@2*”2) cos (;ﬁ (pA — uq)>
(91)
= 2Wo(q, p) cos (jﬁ (pA — uq))-

finalmente, la funcién de Wigner de los estados de gato de Schrédin-
ger es:

Wy (q,p) = Wal(q,p) + W_alg,p) + Wine(q, ). (92)

62



F. Evolucién temporal

Partiendo de derivar la funcién de Wigner con respecto a t:

ow 1 ’ o*(q—1y/2
at:m/e—wy/h< Y (qaq y/ )'(/J(Q'f’y/z)

+ WW" - y/2)>dy, (93)

y considerando que de la ecuacion de Schrédinger se tiene:

op(x,t)  h 82w(x t)
ot i2m  O0x2 EU< ) (z,1),

entonces al sustituir y simplificar, se tendra:

ow 1 , h aQw* y
oo —ipy/h| % z
ot 2rh ) © [izm ( 2y (q * 2>

pero esto se puede escribir como:

oW OWyr Wy
ot ot ot

en donde, debido a que h = %:

aVVT _ 1 —ipy/h 821/)*@ _ y/2)
at  idnm / ¢ og  Ylatu/2)

_ 31?%(;1//2) V" (q y/z)> dy. (94)
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8??] = %/e‘ipy/h< (q+y/2)— q—y/2>
x (g +y/2)P" (¢ —y/2)dy. (95)

Pero se tiene:

PP g —y/2) _ 19°¢* (¢ —y/2)
Oydq 2 0q? ’

Por lo tanto, la integral del primer término de la Ec. (94) sera:

/eipy/hazw*(q —u/2) V(g +y/2)dy

0q?
—ipyn P (a —y/ 2)
=2 wy/h 2)d
/ Dy04 ¥(q+y/2)dy,
al integrar por partes, el resultado de esta integral es:
_2ip [ 9V (g —y/2)
= /e 9 ¥(g+y/2)dy
2 2
561 dq

ahora, para la integral del segundo término de la Ec. , dado que:

Pylg+y/2) _ 10*h(g+y/2)
dydq 2 0q? ’

entonces:

V™ (q —y/2)dy

2

al integrar por partes, el resultado de la integral sera:

/ 7zpy/ha w(q +y/2)
dq>

L?/e*ipy/hwzﬁ(quﬂ)dy
o—ivu/n O (a4 = y/2) a¢(q+y/2)
/h

(97)

64



Pero la Ec. (94) contiene una resta de integrales (omitiendo la cons-

tante ———), a saber:
dmm /)’

V(g +y/2)dy

_ /e—ipy/h aQQ/J(q + y/2)
0q>

/e—ipy/h 82¢*(q B y/2)
0q?

V(g —y/2)dy, (98)

cuyos resultados estan dados por las Ecs. , para la primera, y
(97) para la segunda, de manera que al restarse se obtiene:

_% /e—iw/ﬁ (qu +y/2) + WW@ - y/2)) dy,

por lo tanto:

6WT _ Z47Tp£ —ipy/h, ) * y g _ ﬁaW(Qap)
at h ax/e ¥ (q_2)w<‘”2)dy__m or

(99)

Por otra parte, si se considera que, de la Ec. (95)), es posible desarro-
llar la funcién U(z) en una serie de Taylor, de manera que:

Ulg+y/2) =U(q) + gU’(q) + % (g)QU”(q)Jr... - Z%G"U(q) (Q)n

U A C) TR SELA LIS

n=0

entonces:

Ula /2 - Uta—y2) = 3 5 200 (1) (1)



Pero de aqui puede notarse que, para n par, (%)n — (75) =0,
mientras que para n impar, los términos se suman, es decir, se obtiene
(%)n — (—5) = 2( ) , por lo que se puede hacer n = 2s + 1, con lo

que:

o0

1 9%ty 1\* .
Ula+/2) = U=/ = 3 i g (5) #°%
n=0 :

Ahora, multiplicar n veces la funcién e~®¥/" por y equivale a deri-
varla n veces con respecto a p, es decir:

ipy/h p——
yne td = (Zh)n apn e )
asi, considerando estos resultados y la condicién que se obtuvo, los

posibles valores que toma n, es decir n = 2s+1, y por lo tanto (z’h)QS+1 =
(—1)%ih?st1, entonces la Ec. seré:

GWU _ ii Zh25+1 82s+1U( ) } 2s
ot 1h? 2s + 1) 9gZstl

2
y aa;;;ll/e—ipy/hw* (q _ %) W (q + %) dy.

Por lo tanto, al considerar la definicién de la funcién de Wigner (Ec.
(1)) esto serd:

Esto conduce, finalmente, a que:

OW(g,p) _ _p IW(4;p)
at m 8x

+Z - 23+ ) <2 dg2s+1 ap W(q,p). (101)
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G. Cdbdigos para las graficas

En esta seccién se comparten los cédigos (escritos en Python) que
se usaron para realizar las graficas del presente trabajo. En general, las
paqueterias que se han importado son las siguientes:

import numpy as np

import matplotlib.pyplot as plt

from scipy.special import hermite

from math import factorial

from scipy.special import genlaguerre
from mpl_toolkits.mplot3d import Axes3D
from scipy.special import factorial

Figura (1} Funciéon de onda para un estado de Fock.

# Funcién de onda para un estado de Fock

def funcionDeOnda_Fock(n, x):
Hn = hermite(n)
normalizacion = 1 / np.sqrt(np.sqrt(np.pi) * 2%*n * factorial(n))
return normalizacion * Hn(x) * np.exp(-x**2 / 2)

x = np.linspace(-5, 5, 500)

# Graficar las funciones de onda para diferentes valores de n
plt.figure(figsize = (10, 6))
for n in range(4):

psi_n = funcionDeOnda_Fock(n, x)

plt.plot(x, psi_n, label = £'$n = {n}$")

plt.title("Funcién de onda $\psi_n(x)$ para los estados de Fock")
plt.xlabel("$x$")

plt.ylabel("$\psi_n(x)$")

plt.axhline(0, color ='black', linewidth = 0.8, linestyle = '--')
plt.legend()

plt.grid()

plt.show()
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Figura [2} Densidad de probabilidad de los estados de
Fock.

# Funcién de onda en el espacio de posicién

def funcionDeOnda_Fock(n, x):
Hn = hermite(n)
normalizacion = 1 / np.sqrt(np.sqrt(np.pi) * 2%*n * factorial(n))
return normalizacion * Hn(x) * np.exp(-x**2 / 2)

x = np.linspace(-5, 5, 500)

# Graficar las distribuciones de probabilidad para diferentes valores de n
plt.figure(figsize = (10, 6))
for n in range(4):

psi_n = funcionDeOnda_Fock(n, x)

plt.plot(x, psi_n*x2, label = f'$n = {n}$')

plt.title('Proyeccién de $|\\psi(q)|~2$ sobre $q$')
plt.xlabel('$q$')

plt.ylabel('$I\\psi(q)|~2%")

plt.legend()

plt.grid(Q)

plt.show()

Figura [3; Funcién de Wigner para estados de Fock en
2D.

plt.figure(figsize=(12, 8))

# Graficar en 2D para diferentes valores de n

for n in range(4):
W = W_fock[n]
plt.subplot(2, 2, n + 1)
plt.contourf(Q, P, W, levels=100, cmap="inferno", vmin=W_min, vmax=W_max)
plt.title(f"Funcién de Wigner para $| {n} \\rangle $")
plt.xlabel("$q$")
plt.ylabel("$p$")
plt.colorbar(label="$W(q, p)$")
plt.axhline(0, color="black", linestyle="--", linewidth=0.5)
plt.axvline(0, color="black", linestyle="--", linewidth=0.5)

plt.tight_layout ()
plt.show()
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Figura
R3.

: Funcion de Wigner para estados de Fock en

fig = plt.figure(figsize=(20, 20))

# Graficar en 3D para diferentes valores de n
for n in range(4):
W = W_fock[n]

ax = fig.add_subplot(2, 2, n + 1, projection='3d')
surf = ax.plot_surface(Q, P, W, cmap="inferno", edgecolor='black',
1w=0.1, alpha=0.9, vmin=W_min, vmax=W_max)

ax.set_title(f"Funcién de Wigner para $| {n} \\rangle $", fontsize=20)
ax.set_xlabel("$q$", fontsize=18)

ax.set_ylabel("$p$", fontsize=18)

ax.set_zlabel("$W(q, p)$", fontsize=18)

if n == 0 or n == 2:
ax.view_init(15, 210) # Angulo de vista
if n == 1 or n == 3:

ax.view_init(15, 210) # Angulo de vista

plt.tight_layout()
plt.show()

Figura |5: Distribucion de probabilidades de un estado
coherente en la base de Fock.

# Distribucién de probabilidades en la base de Fock

def coherent_fock_distribution(alpha, n_max) :
n = np.arange(n_max + 1)
probabilidades = np.abs(alpha**n / np.sqrt(factorial(n)))**2 * np.exp(-np.abs(alpha)**2)
return n, probabilidades

# Parametros del estado coherente
alpha = 4
n_max = 35

n, probabilidades = coherent_fock_distribution(alpha, n_max)

plt.figure(figsize = (10, 6))

plt.bar(n, probabilidades, color = "blue", alpha = 0.7, edgecolor = "black")
plt.title("Distribucién de probabilidades en la base de Fock para $|\\alpha \\rangle$")
plt.xlabel("$n$")

plt.ylabel("$P(n)$")

plt.x1im(0, n_max)

plt.show()
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Figura[6} Funcién de Wigner para un estado coherente
desplazado.

def wigner_fock_state(n, q, p):
alpha_squared = q**2 + p¥*2
Ln = genlaguerre(n, 0)
W= (2 / np.pi) * ((-1)**n) * Ln(4 * alpha_squared) * np.exp(-2 * alpha_squared)
return W

def wigner_coherent(q, p, beta_re, beta_im):
alpha_sq = (q - beta_re)**2 + (p - beta_im)**2
return (2 / np.pi) * np.exp(-2 * alpha_sq)

def wigner_squeezed(q, p, r, theta):
X1 = q * np.cos(theta) + p * np.sin(theta)
X2 = -q * np.sin(theta) + p * np.cos(theta)
return (2 / np.pi) * np.exp(-0.5 * (X1*%*2 * np.exp(-2 * r) + X2%*2 * np.exp(2 * r)))

q = np.linspace(-3, 3, 1000)
p = np.linspace(-3, 3, 1000)
Q, P = np.meshgrid(q, p)

W_fock = [wigner_fock_state(n, Q, P) for n in range(4)]
W_coherent = [wigner_coherent(Q, P, beta_re, beta_im)

for beta_re, beta_im in [(0, 0), (1, 1), (-1, 2), (2, -1)]1]
W_squeezed = [wigner_squeezed(Q, P, 0.7, np.pi)]

W_min = min(W.min() for W in W_fock + W_coherent + W_squeezed)
W_max = max(W.max() for W in W_fock + W_coherent + W_squeezed)

W = W_coherent[1]

fig = plt.figure(figsize=(16, 7))

# Grafica 2D

axl = fig.add_subplot(l, 2, 1)

contour = axl.contourf(Q, P, W, levels=100, cmap="seismic", vmin=W_min, vmax=W_max)
axl.set_xlabel("$q$", fontsize=23)

axl.set_ylabel("$p$", fontsize=23)

axl.axhline(0, color="black", linestyle="--", linewidth=0.5)

axl.axvline(0, color="black", linestyle="--", linewidth=0.5)

# Grafica 3D

ax2 = fig.add_axes([0.3, 0, 0.9, 1.1], projection='3d')

surf = ax2.plot_surface(Q, P, W, cmap="seismic", edgecolor="black", lw=0.1, alpha=0.9,
vmin=W_min, vmax=W_max)

ax2.set_xlabel("$q$", fontsize=23)

ax2.set_ylabel("$p$", fontsize=23)

ax2.set_zlabel("$W(q, p)$", fontsize=23)

ax2.view_init (15, 260)

textl = 'Funcién de Wigner para un estado coherente desplazado a ($1,1$)'
fig.suptitle(textl, fontsize=23)

fig.subplots_adjust(bottom=0.2, wspace=0.3)

cbar_ax = fig.add_axes([0.2, 0.05, 0.6, 0.03])

cbar_ax.set_xlabel("$W(q, p)$", fontsize=14)

fig.colorbar(surf, cax=cbar_ax, orientation='horizontal', label="$W(q, p)$")

plt.show()
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Figura [7} Funcién de Wigner para un estado compri-
mido.

def wigner_fock_state(n, q, p):
alpha_squared = q**2 + p¥*2
Ln = genlaguerre(n, 0)
W= (2 / np.pi) * ((-1)**n) * Ln(4 * alpha_squared) * np.exp(-2 * alpha_squared)
return W

def wigner_coherent(q, p, beta_re, beta_im):
alpha_sq = (q - beta_re)**2 + (p - beta_im)**2
return (2 / np.pi) * np.exp(-2 * alpha_sq)

def wigner_squeezed(q, p, r, theta):
X1 = q * np.cos(theta) + p * np.sin(theta)
X2 = -q * np.sin(theta) + p * np.cos(theta)
return (2 / np.pi) * np.exp(-0.5 * (X1*%*2 * np.exp(-2 * r) + X2%*2 * np.exp(2 * r)))

q = np.linspace(-6, 6, 600)
p = np.linspace(-6, 6, 600)
Q, P = np.meshgrid(q, p)

W_fock = [wigner_fock_state(n, Q, P) for n in range(4)]
W_coherent = [wigner_coherent(Q, P, beta_re, beta_im)

for beta_re, beta_im in [(0, 0), (1, 1), (-1, 2), (2, -1)]1]
W_squeezed = [wigner_squeezed(Q, P, 0.7, np.pi)]

W_min = min(W.min() for W in W_fock + W_coherent + W_squeezed)
W_max = max(W.max() for W in W_fock + W_coherent + W_squeezed)

W = W_squeezed[0]

fig = plt.figure(figsize=(16, 7))

# Grafica 2D

axl = fig.add_subplot(l, 2, 1)

contour = axl.contourf(Q, P, W, levels=100, cmap="seismic", vmin=W_min, vmax=W_max)
axl.set_xlabel("$q$", fontsize=23)

axl.set_ylabel("$p$", fontsize=23)

axl.axhline(0, color="black", linestyle="--", linewidth=0.5)

axl.axvline(0, color="black", linestyle="--", linewidth=0.5)

# Grafica 3D

ax2 = fig.add_axes([0.3, 0, 0.9, 1.1], projection='3d')

surf = ax2.plot_surface(Q, P, W, cmap="seismic", edgecolor="black", lw=0.1, alpha=0.9,
vmin=W_min, vmax=W_max)

ax2.set_xlabel("$q$", fontsize=23)

ax2.set_ylabel("$p$", fontsize=23)

ax2.set_zlabel("$W(q, p)$", fontsize=23)

ax2.view_init (15, 30)

fig.suptitle('Funcién de Wigner para un estado comprimido', fontsize=23)
fig.subplots_adjust(bottom=0.2, wspace=0.3)

cbar_ax = fig.add_axes([0.2, 0.05, 0.6, 0.03])

cbar_ax.set_xlabel("$W(q, p)$", fontsize=14)

fig.colorbar(surf, cax=cbar_ax, orientation='horizontal', label="$W(q, p)$")

plt.show()
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Figura |8: Funcién de Wigner para un estado de gato
de Schrodinger.

def wigner_fock_state(n, q, p):
alpha_squared = q**2 + p¥*2
Ln = genlaguerre(n, 0)
W= (2 / np.pi) * ((-1)**n) * Ln(4 * alpha_squared) * np.exp(-2 * alpha_squared)
return W

def wigner_coherent(q, p, beta_re, beta_im):
alpha_sq = (q - beta_re)**2 + (p - beta_im)**2
return (2 / np.pi) * np.exp(-2 * alpha_sq)

def wigner_squeezed(q, p, r, theta):
X1 = q * np.cos(theta) + p * np.sin(theta)
X2 = -q * np.sin(theta) + p * np.cos(theta)
return (2 / np.pi) * np.exp(-0.5 * (X1*%*2 * np.exp(-2 * r) + X2%*2 * np.exp(2 * r)))

def W_Pos(q, p, 90, p0):
alpha_sq = (gq-q0)**2 + (p-p0)**2
return (1 / np.pi) * np.exp(-2*alpha_sq)

def W_Neg(q, p, 90, pO):
alpha_sq = (q+q0)**2 + (p+p0)**2
return (1 / np.pi) * np.exp(-2*alpha_sq)

def W_int(q, p, 90, pO):
arg_cos = 2 * (p*q0 - q*p0)
return (2 / np.pi) * np.exp(-2*(q**2 + p**2) ) * np.cos(arg_cos)

q = np.linspace(-6, 6, 600)
p = np.linspace(-6, 6, 600)
Q, P = np.meshgrid(q, p)
q0 = 3.0
PO = 3.0
W_fock = [wigner_fock_state(n, Q, P) for n in range(4)]
W_coherent = [wigner_coherent(Q, P, beta_re, beta_im)
for beta_re, beta_im in [(0, 0), (1, 1), (-1, 2), (2, -1)]1]

W_squeezed = [wigner_squeezed(Q, P, 0.7, np.pi)]
W_cat = W_Pos(Q, P, q0, p0) + W_Neg(Q, P, q0, p0) + W_int(Q, P, qO, p0)

W_min = min(W.min() for W in W_fock + W_coherent + W_squeezed)
W_max = max(W.max() for W in W_fock + W_coherent + W_squeezed)

W = W_cat
fig = plt.figure(figsize=(16, 7))

# Grafica 2D

axl = fig.add_subplot(l, 2, 1)

contour = axl.contourf(Q, P, W, levels=100, cmap="seismic", vmin=W_min, vmax=W_max)
axl.set_xlabel("$q$", fontsize=23)

axl.set_ylabel("$p$", fontsize=23)

axl.axhline(0, color="black", linestyle="--", linewidth=0.5)

axl.axvline(0, color="black", linestyle="--", linewidth=0.5)

# Grafica 3D

ax2 = fig.add_axes([0.3, 0, 0.9, 1.1], projection='3d')

surf = ax2.plot_surface(Q, P, W, cmap="seismic", edgecolor="black", 1lw=0.1, alpha=0.9,
vmin=W_min, vmax=W_max)
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ax2.set_xlabel("$q$", fontsize=23)
ax2.set_ylabel("$p$", fontsize=23)
ax2.set_zlabel("$W(q, p)$", fontsize=23)
ax2.view_init (15, 30)

fig.suptitle('Funcién de Wigner para un estado de gato de Schrddinger', fontsize=23)
fig.subplots_adjust(bottom=0.2, wspace=0.3)

cbar_ax = fig.add_axes([0.2, 0.05, 0.6, 0.03])

cbar_ax.set_xlabel("$W(q, p)$", fontsize=14)

fig.colorbar(surf, cax=cbar_ax, orientation='horizontal', label="$W(q, p)$")

plt.show()
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